1
|
Boxhammer E, Dienhart C, Rezar R, Hoppe UC, Lichtenauer M. Deciphering the Role of microRNAs: Unveiling Clinical Biomarkers and Therapeutic Avenues in Atrial Fibrillation and Associated Stroke-A Systematic Review. Int J Mol Sci 2024; 25:5568. [PMID: 38791605 PMCID: PMC11122365 DOI: 10.3390/ijms25105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNAs (mRNAs). miRNAs have been implicated in a variety of cardiovascular and neurological diseases, such as myocardial infarction, cardiomyopathies of various geneses, rhythmological diseases, neurodegenerative illnesses and strokes. Numerous studies have focused on the expression of miRNA patterns with respect to atrial fibrillation (AF) or acute ischemic stroke (AIS) However, only a few studies have addressed the expression pattern of miRNAs in patients with AF and AIS in order to provide not only preventive information but also to identify therapeutic potentials. Therefore, the aim of this review is to summarize 18 existing manuscripts that have dealt with this combined topic of AF and associated AIS in detail and to shed light on the most frequently mentioned miRNAs-1, -19, -21, -145 and -146 with regard to their molecular mechanisms and targets on both the heart and the brain. From this, possible diagnostic and therapeutic consequences for the future could be derived.
Collapse
Affiliation(s)
- Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria (U.C.H.); (M.L.)
| | - Christiane Dienhart
- Department of Internal Medicine I, Division of Gastroenterology, Hepathology, Nephrology, Metabolism and Diabetology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| | - Richard Rezar
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria (U.C.H.); (M.L.)
| | - Uta C. Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria (U.C.H.); (M.L.)
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria (U.C.H.); (M.L.)
| |
Collapse
|
2
|
Asjad E, Dobrzynski H. MicroRNAs: Midfielders of Cardiac Health, Disease and Treatment. Int J Mol Sci 2023; 24:16207. [PMID: 38003397 PMCID: PMC10671258 DOI: 10.3390/ijms242216207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a role in post-transcriptional gene regulation. It is generally accepted that their main mechanism of action is the negative regulation of gene expression, through binding to specific regions in messenger RNA (mRNA) and repressing protein translation. By interrupting protein synthesis, miRNAs can effectively turn genes off and influence many basic processes in the body, such as developmental and apoptotic behaviours of cells and cardiac organogenesis. Their importance is highlighted by inhibiting or overexpressing certain miRNAs, which will be discussed in the context of coronary artery disease, atrial fibrillation, bradycardia, and heart failure. Dysregulated levels of miRNAs in the body can exacerbate or alleviate existing disease, and their omnipresence in the body makes them reliable as quantifiable markers of disease. This review aims to provide a summary of miRNAs as biomarkers and their interactions with targets that affect cardiac health, and intersperse it with current therapeutic knowledge. It intends to succinctly inform on these topics and guide readers toward more comprehensive works if they wish to explore further through a wide-ranging citation list.
Collapse
Affiliation(s)
- Emman Asjad
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Halina Dobrzynski
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland
| |
Collapse
|
3
|
Cebro-Márquez M, Rodríguez-Mañero M, Serrano-Cruz V, Vilar-Sánchez ME, González-Melchor L, García-Seara J, Martínez-Sande JL, Aragón-Herrera A, Martínez-Monzonís MA, González-Juanatey JR, Lage R, Moscoso I. Plasma miR-486-5p Expression Is Upregulated in Atrial Fibrillation Patients with Broader Low-Voltage Areas. Int J Mol Sci 2023; 24:15248. [PMID: 37894937 PMCID: PMC10607367 DOI: 10.3390/ijms242015248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide, affecting 1% of the population over 60 years old. The incidence and prevalence of AF are increasing globally, representing a relevant health problem, suggesting that more advanced strategies for predicting risk stage are highly needed. miRNAs mediate several processes involved in AF. Our aim was to identify miRNAs with a prognostic value as biomarkers in patients referred for AF ablation and its association with LVA extent, based on low-voltage area (LVA) maps. In this study, we recruited 44 AF patients referred for catheter ablation. We measured the expression of 84 miRNAs in plasma from peripheral blood in 3 different groups based on LVA extent. Expression analysis showed that miR-486-5p was significantly increased in patients with broader LVA (4-fold, p = 0.0002; 5-fold, p = 0.0001). Receiver operating characteristic curve analysis showed that miR-486-5p expression could predict atrium LVA (AUC, 0.8958; p = 0.0015). Also, miR-486-5p plasma levels were associated with AF-type (AUC, 0.7137; p = 0.0453). In addition, miR-486-5p expression was positively correlated with LVA percentage, left atrial (LA) area, and LA volume (r = 0.322, p = 0.037; r = 0.372, p = 0.015; r = 0.319, p = 0.045, respectively). These findings suggest that miR-486-5p expression might have prognostic significance in LVA extent in patients with AF.
Collapse
Affiliation(s)
- María Cebro-Márquez
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (V.S.-C.); (M.E.V.-S.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Moisés Rodríguez-Mañero
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Valentina Serrano-Cruz
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (V.S.-C.); (M.E.V.-S.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
| | - Marta E. Vilar-Sánchez
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (V.S.-C.); (M.E.V.-S.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
| | - Laila González-Melchor
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
| | - Javier García-Seara
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José Luis Martínez-Sande
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Alana Aragón-Herrera
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - María Amparo Martínez-Monzonís
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José Ramón González-Juanatey
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Ricardo Lage
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (V.S.-C.); (M.E.V.-S.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Isabel Moscoso
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (V.S.-C.); (M.E.V.-S.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (L.G.-M.); (J.G.-S.); (J.L.M.-S.); (A.A.-H.); (M.A.M.-M.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
4
|
Tribulova N. Editorial for the IJMS Special Issue "Progress in Understanding of Cardiac Arrhythmia Mechanisms and Antiarrhythmic Targets". Int J Mol Sci 2023; 24:ijms24119134. [PMID: 37298084 DOI: 10.3390/ijms24119134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023] Open
Abstract
Cardiac rhythm disorders, in particular life-threatening ventricular fibrillation and stroke-provoking fibrillation of the atria, are a permanent focus of both clinical and experimental cardiologists [...].
Collapse
Affiliation(s)
- Narcis Tribulova
- Center of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovakia
| |
Collapse
|
5
|
Left Ventricular Hypertrophy and Ventricular Tachyarrhythmia: The Role of Biomarkers. Int J Mol Sci 2023; 24:ijms24043881. [PMID: 36835293 PMCID: PMC9958550 DOI: 10.3390/ijms24043881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Left ventricular hypertrophy (LVH) refers to a complex rebuilding of the left ventricle that can gradually lead to serious complications-heart failure and life-threatening ventricular arrhythmias. LVH is defined as an increase in the size of the left ventricle (i.e., anatomically), therefore the basic diagnosis detecting the increase in the LV size is the domain of imaging methods such as echocardiography and cardiac magnetic resonance. However, to evaluate the functional status indicating the gradual deterioration of the left ventricular myocardium, additional methods are available approaching the complex process of hypertrophic remodeling. The novel molecular and genetic biomarkers provide insights on the underlying processes, representing a potential basis for targeted therapy. This review summarizes the spectrum of the main biomarkers employed in the LVH valuation.
Collapse
|
6
|
de Los Reyes-García AM, Zapata-Martínez L, Águila S, Lozano ML, Martínez C, González-Conejero R. microRNAs as biomarkers of risk of major adverse cardiovascular events in atrial fibrillation. Front Cardiovasc Med 2023; 10:1135127. [PMID: 36895835 PMCID: PMC9988920 DOI: 10.3389/fcvm.2023.1135127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Atrial fibrillation is a complex and multifactorial disease. Although prophylactic anticoagulation has great benefits in avoiding comorbidities, adverse cardiovascular events still occur and thus in recent decades, many resources have been invested in the identification of useful markers in the prevention of the risk of MACE in these patients. As such, microRNAs, that are small non-coding RNAs whose function is to regulate gene expression post-transcriptionally, have a relevant role in the development of MACE. miRNAs, have been investigated for many years as potential non-invasive biomarkers of several diseases. Different studies have shown their utility in the diagnosis and prognosis of cardiovascular diseases. In particular, some studies have associated the presence of certain miRNAs in plasma with the development of MACE in AF. Despite these results, there are still many efforts to be done to allow the clinical use of miRNAs. The lack of standardization concerning the methodology in purifying and detecting miRNAs, still provides contradictory results. miRNAs also have a functional impact in MACE in AF through the dysregulation of immunothrombosis. Indeed, miRNAs may be a link between MACE and inflammation, through the regulation of neutrophil extracellular traps that are a key element in the establishment and evolution of thrombotic events. The use of miRNAs as therapy against thromboinflammatory processes should also be a future approach to avoid the occurrence of MACE in atrial fibrillation.
Collapse
Affiliation(s)
- Ascensión M de Los Reyes-García
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia IMIB Pascual Parrilla, Murcia, Spain
| | - Laura Zapata-Martínez
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia IMIB Pascual Parrilla, Murcia, Spain
| | - Sonia Águila
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia IMIB Pascual Parrilla, Murcia, Spain
| | - María L Lozano
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia IMIB Pascual Parrilla, Murcia, Spain
| | - Constantino Martínez
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia IMIB Pascual Parrilla, Murcia, Spain
| | - Rocío González-Conejero
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia IMIB Pascual Parrilla, Murcia, Spain
| |
Collapse
|
7
|
Zhang L, Wang X, Huang C. A narrative review of non-coding RNAs in atrial fibrillation: potential therapeutic targets and molecular mechanisms. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1486. [PMID: 34734038 PMCID: PMC8506732 DOI: 10.21037/atm-21-4483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022]
Abstract
Objective This review summarizes the advances in the study of ncRNAs and atrial remodeling mechanisms to explore potential therapeutic targets and strategies for AF. Background Atrial fibrillation (AF) is one of the most common arrhythmias, and its morbidity and mortality rates are gradually increasing. Non-coding ribonucleic acid RNAs (ncRNAs) are transcribed from the genome and do not have the ability to be translated into proteins. A growing body of evidence has shown ncRNAs are extensively involved in the pathophysiological processes underlying AF. However, the precise molecular mechanisms of these associations have not been fully elucidated. Atrial remodeling plays a key role in the occurrence and development of AF, and includes electrical remodeling, structural remodeling, and autonomic nerve remodeling. Research has shown that ncRNA expression is altered in the plasma and tissues of AF patients that mediate cardiac excitation and arrhythmia, and is closely related to atrial remodeling. Methods Literatures about ncRNAs and atrial fibrillation were extensively reviewed to discuss and analyze. Conclusions The biology of ncRNAs represents a relatively new field of research and is still in an emerging stage. Recent studies have laid a foundation for understanding the molecular mechanisms of AF, future studies aimed at identifying how ncRNAs act on atrial fibrillation to provide potentially promising therapeutic targets for the treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
8
|
A Review of the Molecular Mechanisms Underlying Cardiac Fibrosis and Atrial Fibrillation. J Clin Med 2021; 10:jcm10194430. [PMID: 34640448 PMCID: PMC8509789 DOI: 10.3390/jcm10194430] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
The cellular and molecular mechanism involved in the pathogenesis of atrial fibrosis are highly complex. We have reviewed the literature that covers the effectors, signal transduction and physiopathogenesis concerning extracellular matrix (ECM) dysregulation and atrial fibrosis in atrial fibrillation (AF). At the molecular level: angiotensin II, transforming growth factor-β1, inflammation, and oxidative stress are particularly important for ECM dysregulation and atrial fibrotic remodelling in AF. We conclude that the Ang-II-MAPK and TGF-β1-Smad signalling pathways play a major, central role in regulating atrial fibrotic remodelling in AF. The above signalling pathways induce the expression of genes encoding profibrotic molecules (MMP, CTGF, TGF-β1). An important mechanism is also the generation of reactive oxygen species. This pathway induced by the interaction of Ang II with the AT2R receptor and the activation of NADPH oxidase. Additionally, the interplay between cardiac MMPs and their endogenous tissue inhibitors of MMPs, is thought to be critical in atrial ECM metabolism and fibrosis. We also review recent evidence about the role of changes in the miRNAs expression in AF pathophysiology and their potential as therapeutic targets. Furthermore, keeping the balance between miRNA molecules exerting anti-/profibrotic effects is of key importance for the control of atrial fibrosis in AF.
Collapse
|
9
|
Targeting of Potassium Channels in Cardiac Arrhythmias. Trends Pharmacol Sci 2021; 42:491-506. [PMID: 33858691 DOI: 10.1016/j.tips.2021.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Cardiomyocytes are endowed with a complex repertoire of ion channels, responsible for the generation of action potentials (APs), travelling waves of electrical excitation, propagating throughout the heart and leading to cardiac contractions. Cardiac AP waveforms are shaped by a striking diversity of K+ channels. The pivotal role of K+ channels in cardiac health and disease is underscored by the dramatic impact that K+ channel dysfunction has on cardiac arrhythmias. The development of drugs targeted to specific K+ channels is expected to provide an optimized approach to antiarrhythmic therapy. Here, we review the functional roles of cardiac potassium channels under normal and diseased states. We survey current antiarrhythmic drugs (AADs) targeted to voltage-gated and Ca2+-activated K+ channels and highlight future research opportunities.
Collapse
|
10
|
Ruan ZB, Wang F, Yu QP, Chen GC, Zhu L. Integrative analysis of the circRNA-miRNA regulatory network in atrial fibrillation. Sci Rep 2020; 10:20451. [PMID: 33235238 PMCID: PMC7687891 DOI: 10.1038/s41598-020-77485-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
We aimed to investigate the circRNA-miRNA regulatory network in atrial fibrillation (AF) by using Cytoscape and HMDD v3.0. Finally, 120 differentially expressed circRNAs in peripheral blood monocytes of 4 AF patients were preliminarily screened by circRNA microarray. circRNA_4648, circRNA_4631, and circRNA_2875 were the first four circRNAs with the most binding nodes in the circRNA-miRNA network. The top three most frequent miRNAs for up-regulated circRNAs were hsa-miR-328 that interacted with 5 up-regulated circRNAs, hsa-miR-4685-5p with 4 up-regulated circRNAs, hsa-miR-3150a-3p, hsa-miR-4649-5p, hsa-miR-4783-3p, and hsa-miR-8073 with 3 up-regulated circRNAs,, while the top three most frequent miRNAs for down-regulated circRNAs were hsa-miR-328 that interacted with 14 down-regulated circRNAs, hsa-miR-4685-5p with 11 down-regulated circRNAs and hsa-miR-661 with 9 down-regulated circRNAs. According to HMDD v3.0, five up-regulated and eleven down-regulated circRNAs were found to interact with AF related miRNAs. These results indicated the possible regulatory network between circRNAs and miRNAs in the pathogenesis of AF.
Collapse
Affiliation(s)
- Zhong-Bao Ruan
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, 225300, People's Republic of China.
| | - Fei Wang
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, 225300, People's Republic of China
| | - Qiu-Ping Yu
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, 225300, People's Republic of China
| | - Ge-Cai Chen
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, 225300, People's Republic of China
| | - Li Zhu
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, 225300, People's Republic of China
| |
Collapse
|