1
|
Mavroeidis L, Kalofonou F, Casey R, Napolitano A, Bulusu R, Jones RL. Identifying and managing rare subtypes of gastrointestinal stromal tumors. Expert Rev Gastroenterol Hepatol 2025:1-13. [PMID: 40156874 DOI: 10.1080/17474124.2025.2486304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/23/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION A subset of gastrointestinal stromal tumors (GISTs) lacks the common mutations in KIT/PDGFRa genes. This is a rare and heterogeneous group of challenging GISTs due to their diversity and absence of sensitivity to the tyrosine kinase inhibitor (TKI) imatinib. AREAS COVERED In this manscript, we review the pathogenesis, natural history, diagnostic features and management of KIT/PDGFRa wild-type (WT) GISTs, including SDH-deficient GISTs, GISTs with mutations in the RAS/RAF pathway, and quadruple WT GISTs which lack mutations in either KIT/PDGFRa and SDH genes or components of the RAS/RAF pathway, and syndromic GISTs as well as GISTs with rare KIT/PDGFRa mutations. EXPERT OPINION Patients should be managed in reference centers. There has been progress in the understanding of the biology of these GISTs, and promising therapeutic targets have been identified. In SDH-deficient GISTs, the TKI olverembatinib has shown encouraging clinical activity but requires further clinical validation, while the HIF2a inhibitor bezultifan and temozolomide alone or in combination with the death receptor agonist 5 are under clinical investigation. Targeting the RAS/RAF pathway in RAS/RAF-mutated GISTs warrants evaluation in clinical trials. Rare molecular alterations in quadruple WT GISTs require investigation for their oncogenic potential. Collaborative research and patient advocacy is critical for these extremely rare tumors.
Collapse
Affiliation(s)
- Leonidas Mavroeidis
- Sarcoma Unit, The Royal Marsden Hospital and Institute of Cancer Research, London, UK
- Department of Oncology, Oxford University Hospitals, Oxford, UK
| | - Foteini Kalofonou
- Sarcoma Unit, The Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - Ruth Casey
- Department of Endocrinology for Ruth Casey and Department of Oncology for Ramesh Bulusu, Cambridge University Hospitals, Cambridge, UK
| | - Andrea Napolitano
- Sarcoma Unit, The Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - Ramesh Bulusu
- Department of Endocrinology for Ruth Casey and Department of Oncology for Ramesh Bulusu, Cambridge University Hospitals, Cambridge, UK
| | - Robin L Jones
- Sarcoma Unit, The Royal Marsden Hospital and Institute of Cancer Research, London, UK
| |
Collapse
|
2
|
Popoiu TA, Pîrvu CA, Popoiu CM, Iacob ER, Talpai T, Voinea A, Albu RS, Tãban S, Bãlãnoiu LM, Pantea S. Gastrointestinal Stromal Tumors (GISTs) in Pediatric Patients: A Case Report and Literature Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1040. [PMID: 39334573 PMCID: PMC11429550 DOI: 10.3390/children11091040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Gastrointestinal stromal tumors (GISTs) are rare mesenchymal neoplasms that primarily affect adults, with pediatric cases constituting only 0.5-2.7% of the total. Pediatric GISTs present unique clinical, genetic, and pathological features that distinguish them from adult cases. This literature review aims to elucidate these differences, emphasizing diagnostic and therapeutic challenges. We discuss the resistance of pediatric GISTs to conventional chemotherapy and highlight the importance of surgical intervention, especially in emergency situations involving intra-abdominal bleeding. The review also explores the molecular characteristics of pediatric GISTs, including rare mutations such as quadruple-negative wild-type GIST with an FGF3 gene gain mutation. To illustrate these points, we conclude with a case from our clinic involving a 15-year-old female with multiple CD117-positive gastric GISTs and a quadruple-negative wild-type genetic profile who required urgent surgical intervention following a failed tumor embolization. This case underscores the critical need for early diagnosis and individualized therapeutic strategies combining oncologic and surgical care to improve outcomes in pediatric GIST patients.
Collapse
Affiliation(s)
- Tudor-Alexandru Popoiu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department III of Functional Sciences, Discipline of Medical Informatics and Biostatistics, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cãtãlin-Alexandru Pîrvu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cãlin-Marius Popoiu
- Department of Pediatric Surgery, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Emil Radu Iacob
- Department of Pediatric Surgery, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Tamas Talpai
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Amalia Voinea
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Rãzvan-Sorin Albu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Sorina Tãban
- Department of Pathology, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Larisa-Mihaela Bãlãnoiu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stelian Pantea
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
3
|
Denu RA, Joseph CP, Urquiola ES, Byrd PS, Yang RK, Ratan R, Zarzour MA, Conley AP, Araujo DM, Ravi V, Nassif Haddad EF, Nakazawa MS, Patel S, Wang WL, Lazar AJ, Somaiah N. Utility of Clinical Next Generation Sequencing Tests in KIT/PDGFRA/SDH Wild-Type Gastrointestinal Stromal Tumors. Cancers (Basel) 2024; 16:1707. [PMID: 38730662 PMCID: PMC11083047 DOI: 10.3390/cancers16091707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Objective: The vast majority of gastrointestinal stromal tumors (GISTs) are driven by activating mutations in KIT, PDGFRA, or components of the succinate dehydrogenase (SDH) complex (SDHA, SDHB, SDHC, and SDHD genes). A small fraction of GISTs lack alterations in KIT, PDGFRA, and SDH. We aimed to further characterize the clinical and genomic characteristics of these so-called "triple-negative" GISTs. Methods: We extracted clinical and genomic data from patients seen at MD Anderson Cancer Center with a diagnosis of GIST and available clinical next generation sequencing data to identify "triple-negative" patients. Results: Of the 20 patients identified, 11 (55.0%) had gastric, 8 (40.0%) had small intestinal, and 1 (5.0%) had rectal primary sites. In total, 18 patients (90.0%) eventually developed recurrent or metastatic disease, and 8 of these presented with de novo metastatic disease. For the 13 patients with evaluable response to imatinib (e.g., neoadjuvant treatment or for recurrent/metastatic disease), the median PFS with imatinib was 4.4 months (range 0.5-191.8 months). Outcomes varied widely, as some patients rapidly developed progressive disease while others had more indolent disease. Regarding potential genomic drivers, four patients were found to have alterations in the RAS/RAF/MAPK pathway: two with a BRAF V600E mutation and two with NF1 loss-of-function (LOF) mutations (one deletion and one splice site mutation). In addition, we identified two with TP53 LOF mutations, one with NTRK3 fusion (ETV6-NTRK3), one with PTEN deletion, one with FGFR1 gain-of-function (GOF) mutation (K654E), one with CHEK2 LOF mutation (T367fs*), one with Aurora kinase A fusion (AURKA-CSTF1), and one with FANCA deletion. Patients had better responses with molecularly targeted therapies than with imatinib. Conclusions: Triple-negative GISTs comprise a diverse cohort with different driver mutations. Compared to KIT/PDGFRA-mutant GIST, limited benefit was observed with imatinib in triple-negative GIST. In depth molecular profiling can be helpful in identifying driver mutations and guiding therapy.
Collapse
Affiliation(s)
- Ryan A. Denu
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cissimol P. Joseph
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth S. Urquiola
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Precious S. Byrd
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard K. Yang
- Department of Pathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ravin Ratan
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Alejandra Zarzour
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anthony P. Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dejka M. Araujo
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vinod Ravi
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elise F. Nassif Haddad
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael S. Nakazawa
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Lien Wang
- Department of Pathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexander J. Lazar
- Department of Pathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Riccetti MR, Green J, Taylor TJ, Perl AKT. Prenatal FGFR2 Signaling via PI3K/AKT Specifies the PDGFRA + Myofibroblast. Am J Respir Cell Mol Biol 2024; 70:63-77. [PMID: 37734036 PMCID: PMC10768833 DOI: 10.1165/rcmb.2023-0245oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Abstract
It is well known that FGFR2 (fibroblast growth factor receptor 2) signaling is critical for proper lung development. Recent studies demonstrate that epithelial FGFR2 signaling during the saccular phase of lung development (sacculation) regulates alveolar type 1 (AT1) and AT2 cell differentiation. During sacculation, PDGFRA (platelet-derived growth factor receptor-α)-positive lung fibroblasts exist as three functional subtypes: contractile myofibroblasts, extracellular matrix-producing matrix fibroblasts, and lipofibroblasts. All three subtypes are required during alveolarization to establish a niche that supports AT2 epithelial cell self-renewal and AT1 epithelial cell differentiation. FGFR2 signaling directs myofibroblast differentiation in PDGFRA+ fibroblasts during alveolar reseptation after pneumonectomy. However, it remains unknown if FGFR2 signaling regulates PDGFRA+ myo-, matrix, or lipofibroblast differentiation during sacculation. In this study, FGFR2 signaling was inhibited by temporal expression of a secreted dominant-negative FGFR2b (dnFGFR2) by AT2 cells from embryonic day (E) 16.5 to E18.5. Fibroblast and epithelial differentiation were analyzed at E18.5 and postnatal days 7 and 21. At all time points, the number of myofibroblasts was reduced and the number of lipo-/matrix fibroblasts was increased. AT2 cells are increased and AT1 cells are reduced postnatally, but not at E18.5. Similarly, in organoids made with PDGFRA+ fibroblasts from dnFGFR2 lungs, increased AT2 cells and reduced AT1 cells were observed. In vitro treatment of primary wild-type E16.5 adherent saccular lung fibroblasts with recombinant dnFGFR2b/c resulted in reduced myofibroblast contraction. Treatment with the PI3K/AKT activator 740 Y-P rescued the lack of myofibroblast differentiation caused by dnFGFR2b/2c. Moreover, treatment with the PI3K/AKT activator 740 Y-P rescued myofibroblast differentiation in E18.5 fibroblasts isolated from dnFGFR2 lungs.
Collapse
Affiliation(s)
- Matthew R. Riccetti
- Division of Neonatology and Pulmonary Biology and
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Jenna Green
- Division of Neonatology and Pulmonary Biology and
| | - Thomas J. Taylor
- Division of Neonatology and Pulmonary Biology and
- College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio; and
| | - Anne-Karina T. Perl
- Division of Neonatology and Pulmonary Biology and
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
5
|
Chen Y, Chen J, Long L, Han L, Mi X, Song Y, Cheng H, Zhang Y, Cheng L. Case Report: A novel TP53 mutation in a patient with quadruple wild-type gastrointestinal stromal tumor. Front Oncol 2023; 13:1260706. [PMID: 38023229 PMCID: PMC10666786 DOI: 10.3389/fonc.2023.1260706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
In this report, we present a case study of a 64-year-old female who was diagnosed with gastrointestinal stromal tumors (GISTs) and subsequently developed liver metastases despite undergoing radical resection. Next-generation sequencing (NGS) assays indicated that the tumor lacked KIT/PDGFRA/SDH/RAS-P (RAS pathways, RAS-P) mutations, thereby classifying this patient as quadruple WT GIST (qGIST). Treatment with imatinib was initiated, and after 2.5 months, recurrence of the tumor and multiple metastases around the surgical site were observed. Consequently, the patient was switched to sunitinib treatment and responded well. Although she responded well to sunitinib, the patient died of tumor dissemination within 4 months. This case study highlights the potential efficacy of imatinib and the VEGFR-TKI sunitinib in treating qGIST patients harboring a TP53 missense mutation.
Collapse
Affiliation(s)
- Yuhong Chen
- Department of General Surgery, the General Hospital of Southern Theater Command, People’s Liberation Army (PLA), Guangzhou, China
| | - Junyong Chen
- Department of General Surgery, the General Hospital of Southern Theater Command, People’s Liberation Army (PLA), Guangzhou, China
| | - Liansheng Long
- Department of General Surgery, the General Hospital of Southern Theater Command, People’s Liberation Army (PLA), Guangzhou, China
| | - Leng Han
- Department of Pathology, The General Hospital of Southern Theater Command, People’s Liberation Army (PLA), Guangzhou, China
| | - Xiaohui Mi
- Medical Affairs Department, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Yanfang Song
- Medical Affairs Department, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Huanqing Cheng
- Medical Affairs Department, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Yanrui Zhang
- Medical Affairs Department, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Liyang Cheng
- Department of General Surgery, the General Hospital of Southern Theater Command, People’s Liberation Army (PLA), Guangzhou, China
| |
Collapse
|
6
|
Mullen D, Vajpeyi R, Capo-Chichi JM, Nowak K, Wong N, Chetty R. Gastrointestinal Stromal Tumours (GISTs) with KRAS Mutation: A Rare but Important Subset of GISTs. Case Rep Gastrointest Med 2023; 2023:4248128. [PMID: 37663588 PMCID: PMC10471449 DOI: 10.1155/2023/4248128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/27/2022] [Accepted: 07/10/2023] [Indexed: 09/05/2023] Open
Abstract
Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal tumours of the GI tract, usually found in the stomach, jejunum, and ileum. Typically, they are KIT or PDGFR-mutated, allowing for targetable treatments with tyrosine kinase inhibitors such as imatinib. Here, we present two KRAS-mutated wild-type gastrointestinal tumours (GISTs). Both cases occurred in the small bowel of females. Immunohistochemical studies on both tumours showed KIT and DOG-1 positivity, with SDHB retained. Molecular analysis revealed a KRAS G12D mutation and a KRAS G13D mutation, respectively. Wild-type GISTs are extremely uncommon. They typically occur in the stomach or the small bowel. KRAS is one of the genes implicated in this subset of GIST, with KRAS G12D being the most frequently encountered mutation. GIST KRAS mutations can arise alone or in conjunction with KIT, PDFRA, or BRAF mutations. Identification of these rare molecular subtypes is clinically important due to their resistance to imatinib therapy.
Collapse
Affiliation(s)
- Dorinda Mullen
- Division of Anatomical Pathology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, Canada
| | - Rajkumar Vajpeyi
- Division of Anatomical Pathology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, Canada
| | - Jose-Mario Capo-Chichi
- Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Klaudia Nowak
- Division of Anatomical Pathology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, Canada
| | - Newton Wong
- Department of Cellular Pathology, Southmead Hospital, Bristol, UK
| | | |
Collapse
|
7
|
Venkataraman V, George S, Cote GM. Molecular Advances in the Treatment of Advanced Gastrointestinal Stromal Tumor. Oncologist 2023:oyad167. [PMID: 37315115 PMCID: PMC10400151 DOI: 10.1093/oncolo/oyad167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Most gastrointestinal stromal tumors (GIST) are driven by activating mutations in Proto-oncogene c-KIT (KIT) or PDGFRA receptor tyrosine kinases (RTK). The emergence of effective therapies targeting these mutations has revolutionized the management of advanced GIST. However, following initiation of first-line imatinib, a tyrosine kinase inhibitor (TKI), nearly all patients will develop resistance within 2 years through the emergence of secondary resistance mutations in KIT, typically in the Adenosine Triphosphate (ATP)-binding site or activation loop of the kinase domain. Moreover, some patients have de novo resistance to imatinib, such as those with mutations in PDGFRA exon 18 or those without KIT or PDGFRA mutation. To target resistance, research efforts are primarily focused on developing next-generation inhibitors of KIT and/or PDGFRA, which can inhibit alternate receptor conformations or unique mutations, and compounds that impact complimentary pathogenic processes or epigenetic events. Here, we review the literature on the medical management of high-risk localized and advanced GIST and provide an update on clinical trial approaches to this disease.
Collapse
Affiliation(s)
- Vinayak Venkataraman
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
- Mass General Hospital Cancer Center, Center for Sarcoma and Connective Tissue Oncology, Boston, MA, USA
| | - Suzanne George
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
| | - Gregory M Cote
- Mass General Hospital Cancer Center, Center for Sarcoma and Connective Tissue Oncology, Boston, MA, USA
| |
Collapse
|
8
|
Di Vito A, Ravegnini G, Gorini F, Aasen T, Serrano C, Benuzzi E, Coschina E, Monesmith S, Morroni F, Angelini S, Hrelia P. The multifaceted landscape behind imatinib resistance in gastrointestinal stromal tumors (GISTs): A lesson from ripretinib. Pharmacol Ther 2023:108475. [PMID: 37302758 DOI: 10.1016/j.pharmthera.2023.108475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are rare mesenchymal sarcomas and the gold-standard treatment is represented by tyrosine kinase inhibitors (TKIs). Unfortunately, first-line treatment with the TKI imatinib usually promotes partial response or stable disease rather than a complete response, and resistance appears in most patients. Adaptive mechanisms are immediately relevant at the beginning of imatinib therapy, and they may represent the reason behind the low complete response rates observed in GISTs. Concurrently, resistant subclones can silently continue to grow or emerge de novo, becoming the most representative populations. Therefore, a slow evolution of the primary tumor gradually occurs during imatinib treatment, enriching heterogeneous imatinib resistant clonal subpopulations. The identification of secondary KIT/PDGFRA mutations in resistant GISTs prompted the development of novel multi-targeted TKIs, leading to the approval of sunitinib, regorafenib, and ripretinib. Although ripretinib has broad anti-KIT and -PDGFRA activity, it failed to overcome sunitinib as second-line treatment, suggesting that imatinib resistance is more multifaceted than initially thought. The present review summarizes several biological aspects suggesting that heterogeneous adaptive and resistance mechanisms can also be driven by KIT or PDGFRA downstream mediators, alternative kinases, as well as ncRNAs, which are not targeted by any TKI, including ripretinib. This may explain the modest effect observed with ripretinib and all anti-GIST agents in patients.
Collapse
Affiliation(s)
- Aldo Di Vito
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Cesar Serrano
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain; Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Eva Benuzzi
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Emma Coschina
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Sarah Monesmith
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy; Inter-Departmental Center for Health Sciences & Technologies, CIRI-SDV, University of Bologna, Bologna, Italy.
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| |
Collapse
|
9
|
Raza A, Chohan TA, Sarfraz M, Chohan TA, Imran Sajid M, Tiwari RK, Ansari SA, Alkahtani HM, Yasmeen Ansari S, Khurshid U, Saleem H. Molecular modeling of pyrrolo-pyrimidine based analogs as potential FGFR1 inhibitors: a scientific approach for therapeutic drugs. J Biomol Struct Dyn 2023; 41:14358-14371. [PMID: 36898855 DOI: 10.1080/07391102.2023.2187638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023]
Abstract
Fibroblast growth factor receptors 1 (FGFR1) is an emerging target for the development of anticancer drugs. Uncontrolled expression of FGFR1 is strongly associated with a number of different types of cancers. Apart from a few FGFR inhibitors, the FGFR family members have not been thoroughly studied to produce clinically effective anticancer drugs. The application of proper computational techniques may aid in understanding the mechanism of protein-ligand complex formation, which may provide a better notion for developing potent FGFR1 inhibitors. In this study, a variety of computational techniques, including 3D-QSAR, flexible docking and MD simulation followed by MMGB/PBSA, H-bonds and distance analysis, have been performed to systematically explore the binding mechanism of pyrrolo-pyrimidine derivatives against FGFR1. The 3D-QSAR model was generated to deduce the structural determinants of FGFR1 inhibition. The high q2 and r2 values for the CoMFA and CoMSIA models indicated that the created 3D-QSAR models could reliably predict the bioactivities of FGFR1 inhibitors. The computed binding free energies (MMGB/PBSA) for the selected compounds were consistent with the ranking of their experimental binding affinities against FGFR1. Furthermore, per-residue energy decomposition analysis revealed that the residues Lys514 in catalytic region, Asn568, Glu571 in solvent accessible portion and Asp641 in DFG motif exhibited a strong tendency to mediate ligand-protein interactions through the hydrogen bonding and Van Der Waals interactions. These findings may benefit researchers in gaining better knowledge of FGFR1 inhibition and may serve as a guideline for the development of novel and highly effective FGFR1 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Raza
- College of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Talha Ali Chohan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shabana Yasmeen Ansari
- Pharmaceutical Unit, Department of Electronics, Chemistry and Industrial Engineering, University of Messina, Messina, Italy
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| |
Collapse
|
10
|
Unk M, Jezeršek Novaković B, Novaković S. Molecular Mechanisms of Gastrointestinal Stromal Tumors and Their Impact on Systemic Therapy Decision. Cancers (Basel) 2023; 15:1498. [PMID: 36900287 PMCID: PMC10001062 DOI: 10.3390/cancers15051498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are soft tissue sarcomas that mostly derive from Cajal cell precursors. They are by far the most common soft tissue sarcomas. Clinically, they present as gastrointestinal malignancies, most often with bleeding, pain, or intestinal obstruction. They are identified using characteristic immunohistochemical staining for CD117 and DOG1. Improved understanding of the molecular biology of these tumors and identification of oncogenic drivers have altered the systemic treatment of primarily disseminated disease, which is becoming increasingly complex. Gain-of-function mutations in KIT or PDGFRA genes represent the driving mutations in more than 90% of all GISTs. These patients exhibit good responses to targeted therapy with tyrosine kinase inhibitors (TKIs). Gastrointestinal stromal tumors lacking the KIT/PDGFRA mutations, however, represent distinct clinico-pathological entities with diverse molecular mechanisms of oncogenesis. In these patients, therapy with TKIs is hardly ever as effective as for KIT/PDGFRA-mutated GISTs. This review provides an outline of current diagnostics aimed at identifying clinically relevant driver alterations and a comprehensive summary of current treatments with targeted therapies for patients with GISTs in both adjuvant and metastatic settings. The role of molecular testing and the selection of the optimal targeted therapy according to the identified oncogenic driver are reviewed and some future directions are proposed.
Collapse
Affiliation(s)
- Mojca Unk
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Division of Medical Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| | - Barbara Jezeršek Novaković
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Division of Medical Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Molecular Signature of Biological Aggressiveness in Clear Cell Sarcoma of the Kidney (CCSK). Int J Mol Sci 2023; 24:ijms24043743. [PMID: 36835166 PMCID: PMC9964999 DOI: 10.3390/ijms24043743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Clear cell sarcoma of the kidney (CCSK) is a rare pediatric renal tumor with a worse prognosis than Wilms' tumor. Although recently, BCOR internal tandem duplication (ITD) has been found as a driver mutation in more than 80% of cases, a deep molecular characterization of this tumor is still lacking, as well as its correlation with the clinical course. The aim of this study was to investigate the differential molecular signature between metastatic and localized BCOR-ITD-positive CCSK at diagnosis. Whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS) were performed on six localized and three metastatic BCOR-ITD-positive CCSKs, confirming that this tumor carries a low mutational burden. No significant recurrences of somatic or germline mutations other than BCOR-ITD were identified among the evaluated samples. Supervised analysis of gene expression data showed enrichment of hundreds of genes, with a significant overrepresentation of the MAPK signaling pathway in metastatic cases (p < 0.0001). Within the molecular signature of metastatic CCSK, five genes were highly and significantly over-expressed: FGF3, VEGFA, SPP1, ADM, and JUND. The role of FGF3 in the acquisition of a more aggressive phenotype was investigated in a cell model system obtained by introducing the ITD into the last exon of BCOR by Crispr/Cas9 gene editing of the HEK-293 cell line. Treatment with FGF3 of BCOR-ITD HEK-293 cell line induced a significant increase in cell migration versus both untreated and scramble cell clone. The identification of over-expressed genes in metastatic CCSKs, with a particular focus on FGF3, could offer new prognostic and therapeutic targets in more aggressive cases.
Collapse
|
12
|
Murugaiyan K, Amirthalingam S, Hwang NSY, Jayakumar R. Role of FGF-18 in Bone Regeneration. J Funct Biomater 2023; 14:jfb14010036. [PMID: 36662083 PMCID: PMC9864085 DOI: 10.3390/jfb14010036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In tissue engineering, three key components are cells, biological/mechanical cues, and scaffolds. Biological cues are normally proteins such as growth factors and their derivatives, bioactive molecules, and the regulators of a gene. Numerous growth factors such as VEGF, FGF, and TGF-β are being studied and applied in different studies. The carriers used to release these growth factors also play an important role in their functioning. From the early part of the 1990s, more research has beenconductedon the role of fibroblast growth factors on the various physiological functions in our body. The fibroblast growth factor family contains 22 members. Fibroblast growth factors such as 2, 9, and 18 are mainly associated with the differentiation of osteoblasts and in bone regeneration. FGF-18 stimulates the PI3K/ERK pathway and smad1/5/8 pathway mediated via BMP-2 by blocking its antagonist, which is essential for bone formation. FGF-18 incorporated hydrogel and scaffolds had showed enhanced bone regeneration. This review highlights these functions and current trends using this growth factor and potential outcomes in the field of bone regeneration.
Collapse
Affiliation(s)
- Kavipriya Murugaiyan
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | | | - Nathaniel Suk-Yeon Hwang
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-Bio, Institute of BioEngineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
- Correspondence: or
| |
Collapse
|
13
|
Mathias-Machado MC, de Jesus VHF, de Carvalho Oliveira LJ, Neumann M, Peixoto RD. Current Molecular Profile of Gastrointestinal Stromal Tumors and Systemic Therapeutic Implications. Cancers (Basel) 2022; 14:5330. [PMID: 36358751 PMCID: PMC9656487 DOI: 10.3390/cancers14215330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are malignant mesenchymal tumors arising from the intestinal pacemaker cells of Cajal. They compose a heterogenous group of tumors due to a variety of molecular alterations. The most common gain-of-function mutations in GISTs are either in the KIT (60-70%) or platelet-derived growth factor receptor alpha (PDGFRA) genes (10-15%), which are mutually exclusive. However, a smaller subset, lacking KIT and PDGFRA mutations, is considered wild-type GISTs and presents distinct molecular findings with the activation of different proliferative pathways, structural chromosomal and epigenetic changes, such as inactivation of the NF1 gene, mutations in the succinate dehydrogenase (SDH), BRAF, and RAS genes, and also NTRK fusions. Currently, a molecular evaluation of GISTs is imperative in many scenarios, aiding in treatment decisions from the (neo)adjuvant to the metastatic setting. Here, we review the most recent data on the molecular profile of GISTs and highlight therapeutic implications according to distinct GIST molecular subtypes.
Collapse
Affiliation(s)
| | | | | | - Marina Neumann
- Centro Paulista de Oncologia (Oncoclínicas), São Paulo 04538-132, Brazil
| | | |
Collapse
|
14
|
Gastrointestinal Stromal Tumors Mimicking Gynecologic Disease: Clinicopathological Analysis of 20 Cases. Diagnostics (Basel) 2022; 12:diagnostics12071563. [PMID: 35885469 PMCID: PMC9319443 DOI: 10.3390/diagnostics12071563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022] Open
Abstract
Diagnosis of pelvic gastrointestinal stromal tumors (GISTs) can be challenging because of their nonspecific presentation and similarity to gynecological neoplasms. In this series, we describe the clinicopathological features of 20 GIST cases: 18 patients presented with pelvic mass and/or abdominal pain concerning gynecological disease; 2 patients presented with a posterior rectovaginal mass or an anorectal mass. Total abdominal hysterectomy and/or salpingo-oophorectomy (unilateral or bilateral) were performed in 13 cases. Gross and histological examination revealed that the ovary/ovaries were involved in three cases, the uterus in two cases, the vagina in two cases and the broad ligament in one case. Immunohistochemically, all tumors (20/20, 100%) were diffusely immunoreactive for c-KIT. The tumor cells were also diffusely positive for DOG-1 (10/10, 100%) and displayed focal to diffuse positivity for CD34 (11/12, 92%). Desmin was focally and weakly expressed in 1 of the 14 tested tumors (1/14, 7%), whereas 2 of 8 tumors (2/8, 25%) showed focal SMA positivity. At the molecular level, 7 of 8 (87.5%) GISTs with molecular analysis contained c-KIT mutations with the second and third c-KIT mutations detected in some recurrent tumors. In addition to c-KIT mutation, a pathogenic RB1 mutation was detected in two cases. We extensively discussed these cases focusing on their differential diagnosis described by the submitting pathologists during consultation. Our study emphasizes the importance of precision diagnosis of GISTs. Alertness to this entity in unusual locations, in combination with clinical history, morphological features as well as immunophenotype, is crucial in leading to a definitive classification.
Collapse
|
15
|
Dudzisz-Śledź M, Klimczak A, Bylina E, Rutkowski P. Treatment of Gastrointestinal Stromal Tumors (GISTs): A Focus on Younger Patients. Cancers (Basel) 2022; 14:2831. [PMID: 35740497 PMCID: PMC9221273 DOI: 10.3390/cancers14122831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) originate from Cajal's cells and are the most common mesenchymal neoplasms of the gastrointestinal tract. GISTs in young adults, i.e., patients before the age of 40, are rare and differ from those in older patients and GISTs in children in terms of the molecular and clinical features, including the location and type of mutations. They often harbor other molecular abnormalities than KIT and PDGFRA mutations (wild-type GISTs). The general principles of therapeutic management in young patients are the same as in the elderly. Considering some differences in molecular abnormalities, molecular testing should be the standard procedure to allow appropriate systemic therapy if needed. The optimal treatment strategy should be established by a multidisciplinary team experienced in sarcoma treatment. The impact of treatment on the quality of life and daily activities, including the impact on work, pregnancy, and fertility, in this patient population should be especially taken into consideration.
Collapse
Affiliation(s)
- Monika Dudzisz-Śledź
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (A.K.); (E.B.); (P.R.)
| | | | | | | |
Collapse
|
16
|
Gorunova L, Boye K, Panagopoulos I, Berner JM, Bjerkehagen B, Hompland I, Lobmaier I, Hølmebakk T, Hveem TS, Heim S, Micci F. Cytogenetic and molecular analyses of 291 gastrointestinal stromal tumors: site-specific cytogenetic evolution as evidence of pathogenetic heterogeneity. Oncotarget 2022; 13:508-517. [PMID: 35284037 PMCID: PMC8901076 DOI: 10.18632/oncotarget.28209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm with variable behavior. An increased understanding of the tumor pathogenesis may improve clinical decision-making. Our aim was to obtain more data about the overall chromosome aberrations and intratumor cytogenetic heterogeneity in GIST. We analyzed 306 GIST samples from 291 patients using G-banding, direct sequencing, and statistics. Clonal chromosome aberrations were found in 81% of samples, with 34% of 226 primary tumors demonstrating extensive cytogenetic heterogeneity. 135 tumors had simple (≤5 changes) and 91 had complex (>5 changes) karyotypes. The karyotypically complex tumors more often were non-gastric (P < 0.001), larger (P < 0.001), more mitotically active (P = 0.009) and had a higher risk of rupture (P < 0.001) and recurrence (P < 0.001). Significant differences between gastric and non-gastric tumors were found also in the frequency of main chromosome losses: of 14q (79% vs. 63%), 22q (38% vs. 67%), 1p (23% vs. 88%), and 15q (18% vs. 77%). Gastric PDGFRA-mutated tumors, compared with gastric KIT-mutated, had a lower incidence of 22q losses (18% vs. 43%) but a higher rate of 1p losses (42% vs. 22%). The present, largest by far karyotypic study of GISTs provides further evidence for the existence of variable pathogenetic pathways operating in these tumors’ development.
Collapse
Affiliation(s)
- Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kjetil Boye
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Jeanne-Marie Berner
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bodil Bjerkehagen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Ivar Hompland
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingvild Lobmaier
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Toto Hølmebakk
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Tarjei S. Hveem
- Section for Applied Informatics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
Dermawan JK, Vanderbilt CM, Chang JC, Untch BR, Singer S, Chi P, Tap WD, Antonescu CR. FGFR2::TACC2 fusion as a novel KIT-independent mechanism of targeted therapy failure in a multidrug-resistant gastrointestinal stromal tumor. Genes Chromosomes Cancer 2022; 61:412-419. [PMID: 35170141 DOI: 10.1002/gcc.23030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/06/2022] Open
Abstract
Genetic alterations in FGF/FGFR pathway are infrequent in gastrointestinal stromal tumors (GIST), with rare cases of quadruple wildtype GISTs harboring FGFR1 gene fusions and mutations. Additionally, FGF/FGFR overexpression was shown to promote drug resistance to kinase inhibitors in GISTs. However, FGFR gene fusions have not been directly implicated as a mechanism of drug resistance in GISTs. Herein, we report a patient presenting with a primary small bowel spindle cell GIST and concurrent peritoneal and liver metastases displaying an imatinib-sensitive KIT exon 11 in-frame deletion. After an initial 9-month benefit to imatinib, the patient experienced intraabdominal peritoneal recurrence owing to secondary KIT exon 13 missense mutation and FGFR4 amplification. Despite several additional rounds of tyrosine kinase inhibitors (TKI), the patient's disease progressed after 2 years and presented with multiple peritoneal and liver metastases, including one pericolonic mass harboring secondary KIT exon 18 missense mutation, and a concurrent transverse colonic mass with a FGFR2::TACC2 fusion and AKT2 amplification. All tumors, including primary and recurrent masses, harbored an MGA c.7272 T > G (p.Y2424*) nonsense mutation and CDKN2A/CDKN2B/MTAP deletions. The transcolonic mass showed elevated mitotic count (18/10 HPF), as well as significant decrease in CD117 and DOG1 expression, in contrast to all the other resistant nodules that displayed diffuse and strong CD117 and DOG1 immunostaining. The FGFR2::TACC2 fusion resulted from a 742 kb intrachromosomal inversion at the chr10q26.3 locus, leading to a fusion between exons 1-17 of FGFR2 and exons 7-17 TACC2, which preserves the extracellular and protein tyrosine kinase domains of FGFR2. We present the first report of a multi-drug resistant GIST patient who developed an FGFR2 gene fusion as a secondary genetic event to the selective pressure of various TKIs. This case also highlights the heterogeneous escape mechanisms to targeted therapy across various tumor nodules, spanning from both KIT-dependent and KIT-independent off-target activation pathways.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chad M Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jason C Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brian R Untch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ping Chi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
18
|
Ottaiano A, Santorsola M, Perri F, Pace U, Marra B, Correra M, Sabbatino F, Cascella M, Petrillo N, Ianniello M, Casillo M, Misso G, Delrio P, Caraglia M, Nasti G. Clinical and Molecular Characteristics of Rare Malignant Tumors of Colon and Rectum. BIOLOGY 2022; 11:267. [PMID: 35205133 PMCID: PMC8869306 DOI: 10.3390/biology11020267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023]
Abstract
The most frequent form of colorectal cancer is represented by adenocarcinoma being about 98% of tumor histological types. However, other rare histotypes can be found in colon and rectum (adenosquamous, goblet cell adenocarcinoma, lymphoma, medullary carcinoma, melanoma, mesenchymal, neuroendocrine, plasmacytoma, signet ring, squamous tumors). Altogether, these forms account for less than 2% of colorectal tumors. There are no specific diagnostic or therapeutic recommended approaches and most of the information available from literature derives from small and retrospective clinical series. In the present study, we provide a paramount and updated view on clinical and biologic characteristics of rare colorectal tumors.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (U.P.); (B.M.); (M.C.); (M.C.); (P.D.); (G.N.)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (U.P.); (B.M.); (M.C.); (M.C.); (P.D.); (G.N.)
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (U.P.); (B.M.); (M.C.); (M.C.); (P.D.); (G.N.)
| | - Ugo Pace
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (U.P.); (B.M.); (M.C.); (M.C.); (P.D.); (G.N.)
| | - Bruno Marra
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (U.P.); (B.M.); (M.C.); (M.C.); (P.D.); (G.N.)
| | - Marco Correra
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (U.P.); (B.M.); (M.C.); (M.C.); (P.D.); (G.N.)
| | - Francesco Sabbatino
- Oncology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, Universisty of Salerno, 84131 Salerno, Italy;
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (U.P.); (B.M.); (M.C.); (M.C.); (P.D.); (G.N.)
| | - Nadia Petrillo
- AMES, Centro Polidiagnostico Strumentale srl, 80013 Naples, Italy; (N.P.); (M.I.); (M.C.)
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, 80013 Naples, Italy; (N.P.); (M.I.); (M.C.)
| | - Marika Casillo
- AMES, Centro Polidiagnostico Strumentale srl, 80013 Naples, Italy; (N.P.); (M.I.); (M.C.)
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via de Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Paolo Delrio
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (U.P.); (B.M.); (M.C.); (M.C.); (P.D.); (G.N.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via de Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (U.P.); (B.M.); (M.C.); (M.C.); (P.D.); (G.N.)
| |
Collapse
|
19
|
Nannini M, Rizzo A, Indio V, Schipani A, Astolfi A, Pantaleo MA. Targeted therapy in SDH-deficient GIST. Ther Adv Med Oncol 2021; 13:17588359211023278. [PMID: 34262616 PMCID: PMC8246492 DOI: 10.1177/17588359211023278] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022] Open
Abstract
The medical management of advanced gastrointestinal stromal tumors (GIST) has improved with the development of tyrosine kinase inhibitors (TKIs) targeting KIT and PDGFRA mutations. However, approximately 5-10% of GIST lack KIT and PDGFRA mutations, and about a half are deficient in succinate dehydrogenase (SDH) that promotes carcinogenesis by the cytoplasmic accumulation of succinate. This rare group of GIST primarily occurs in the younger patients than other subtypes, and is frequently associated with hereditary syndromes. The role of TKIs in patients with SDH-deficient GIST is controversial, with conflicting results; thus, there is an urgent need to uncover the disease mechanisms, treatment patterns, and responses to systemic therapy among these patients. Here, based on an extensive literature search, we have provided a rigorous overview of the current evidence on the medical treatment of SDH-deficient GIST.
Collapse
Affiliation(s)
- Margherita Nannini
- Division of Oncology, IRCSS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Rizzo
- Department of Experimental, Diagnostic and Specialized Medicine, University of Bologna, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Angela Schipani
- Department of Experimental, Diagnostic and Specialized Medicine, University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121, Italy
| | | |
Collapse
|
20
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
21
|
Dudzisz-Śledź M, Bylina E, Teterycz P, Rutkowski P. Treatment of Metastatic Gastrointestinal Stromal Tumors (GIST): A Focus on Older Patients. Drugs Aging 2021; 38:375-396. [PMID: 33651369 PMCID: PMC8096750 DOI: 10.1007/s40266-021-00841-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 11/24/2022]
Abstract
Gastrointestinal stromal tumors (GIST) originating in the Cajal cells are the most common mesenchymal neoplasms of the gastrointestinal tract. The median age of patients with this diagnosis is 65 years, and over 20% of cases affect people over the age of 70 years. The effectiveness and tolerability of systemic treatment with tyrosine kinase inhibitors in older patients with GIST seem to be similar to that in younger patients, but some studies have shown that treatment of older patients is suboptimal. Disability, frailty, comorbidities, and concomitant medications may influence treatment decisions, and toxicities also more often lead to treatment discontinuation. The known safety profile and oral administration route of the tyrosine kinase inhibitors used in GIST may allow maximization of treatment and the best efficacy, especially in older patients. This review summarizes the efficacy data for the systemic treatment of GIST, including data for older patients and from real-world experiences, if available and significant. The reported safety data and general rules for toxicity management, including appropriate patient selection and the need for careful monitoring during treatment, are also discussed.
Collapse
Affiliation(s)
- Monika Dudzisz-Śledź
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland.
| | - Elżbieta Bylina
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Paweł Teterycz
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| |
Collapse
|
22
|
Zahra FT, Sajib MS, Mikelis CM. Role of bFGF in Acquired Resistance upon Anti-VEGF Therapy in Cancer. Cancers (Basel) 2021; 13:1422. [PMID: 33804681 PMCID: PMC8003808 DOI: 10.3390/cancers13061422] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Anti-angiogenic approaches targeting the vascular endothelial growth factor (VEGF) signaling pathway have been a significant research focus during the past decades and are well established in clinical practice. Despite the expectations, their benefit is ephemeral in several diseases, including specific cancers. One of the most prominent side effects of the current, VEGF-based, anti-angiogenic treatments remains the development of resistance, mostly due to the upregulation and compensatory mechanisms of other growth factors, with the basic fibroblast growth factor (bFGF) being at the top of the list. Over the past decade, several anti-angiogenic approaches targeting simultaneously different growth factors and their signaling pathways have been developed and some have reached the clinical practice. In the present review, we summarize the knowledge regarding resistance mechanisms upon anti-angiogenic treatment, mainly focusing on bFGF. We discuss its role in acquired resistance upon prolonged anti-angiogenic treatment in different tumor settings, outline the reported resistance mechanisms leading to bFGF upregulation, and summarize the efforts and outcome of combined anti-angiogenic approaches to date.
Collapse
Affiliation(s)
| | | | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (F.T.Z.); (M.S.S.)
| |
Collapse
|
23
|
Indio V, Schipani A, Nannini M, Urbini M, Rizzo A, De Leo A, Altimari A, Di Scioscio V, Messelodi D, Tarantino G, Astolfi A, Pantaleo MA. Gene Expression Landscape of SDH-Deficient Gastrointestinal Stromal Tumors. J Clin Med 2021; 10:jcm10051057. [PMID: 33806389 PMCID: PMC7961685 DOI: 10.3390/jcm10051057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND About 20-40% of gastrointestinal stromal tumors (GISTs) lacking KIT/PDGFRA mutations show defects in succinate dehydrogenase (SDH) complex. This study uncovers the gene expression profile (GEP) of SDH-deficient GIST in order to identify new signaling pathways or molecular events actionable for a tailored therapy. METHODS We analyzed 36 GIST tumor samples, either from formalin-fixed, paraffin-embedded by microarray or from fresh frozen tissue by RNA-seq, retrospectively collected among KIT-mutant and SDH-deficient GISTs. Pathway analysis was performed to highlight enriched and depleted transcriptional signatures. Tumor microenvironment and immune profile were also evaluated. RESULTS SDH-deficient GISTs showed a distinct GEP with respect to KIT-mutant GISTs. In particular, SDH-deficient GISTs were characterized by an increased expression of neural markers and by the activation of fibroblast growth factor receptor signaling and several biological pathways related to invasion and tumor progression. Among them, hypoxia and epithelial-to-mesenchymal transition emerged as features shared with SDH-deficient pheochromocytoma/paraganglioma. In addition, the study of immune landscape revealed the depletion of tumor microenvironment and inflammation gene signatures. CONCLUSIONS This study provides an update of GEP in SDH-deficient GISTs, highlighting differences and similarities compared to KIT-mutant GISTs and to other neoplasm carrying the SDH loss of function. Our findings add a piece of knowledge in SDH-deficient GISTs, shedding light on their putative histology and on the dysregulated biological processes as targets of new therapeutic strategies.
Collapse
Affiliation(s)
- Valentina Indio
- “Giorgio Prodi” Cancer Research Center, University of Bologna, 40138 Bologna, Italy; (V.I.); (G.T.)
| | - Angela Schipani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.S.); (A.R.)
| | - Margherita Nannini
- Division of Oncology, IRCCS—Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (M.N.); (M.A.P.)
| | - Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Alessandro Rizzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.S.); (A.R.)
| | - Antonio De Leo
- Pathology Unit, IRCCS—Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy;
| | - Annalisa Altimari
- Laboratory of Oncologic Molecular Pathology, IRCCS—Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy;
| | - Valerio Di Scioscio
- Radiology Unit, IRCCS—Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy;
| | - Daria Messelodi
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy;
| | - Giuseppe Tarantino
- “Giorgio Prodi” Cancer Research Center, University of Bologna, 40138 Bologna, Italy; (V.I.); (G.T.)
| | - Annalisa Astolfi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| | - Maria Abbondanza Pantaleo
- Division of Oncology, IRCCS—Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (M.N.); (M.A.P.)
| |
Collapse
|
24
|
Urbini M, Astolfi A, Indio V, Nannini M, Schipani A, Bacalini MG, Angelini S, Ravegnini G, Calice G, Del Gaudio M, Secchiero P, Ulivi P, Gruppioni E, Pantaleo MA. Gene duplication, rather than epigenetic changes, drives FGF4 overexpression in KIT/PDGFRA/SDH/RAS-P WT GIST. Sci Rep 2020; 10:19829. [PMID: 33199729 PMCID: PMC7670422 DOI: 10.1038/s41598-020-76519-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/27/2020] [Indexed: 01/02/2023] Open
Abstract
Gastrointestinal stromal tumours that are wild type for KIT and PDGFRA are referred to as WT GISTs. Of these tumours, SDH-deficient (characterized by the loss of SDHB) and quadruple WT GIST (KIT/PDGFRA/SDH/RAS-P WT) subgroups were reported to display a marked overexpression of FGF4, identifying a putative common therapeutic target for the first time. In SDH-deficient GISTs, methylation of an FGF insulator region was found to be responsible for the induction of FGF4 expression. In quadruple WT, recurrent focal duplication of FGF3/FGF4 was reported; however, how it induced FGF4 expression was not investigated. To assess whether overexpression of FGF4 in quadruple WT could be driven by similar epigenetic mechanisms as in SDH-deficient GISTs, we performed global and locus-specific (on FGF4 and FGF insulator) methylation analyses. However, no epigenetic alterations were detected. Conversely, we demonstrated that in quadruple WT GISTs, FGF4 expression and the structure of the duplication were intimately connected, with the copy of FGF4 closer to the ANO1 super-enhancer being preferentially expressed. In conclusion, we demonstrated that in quadruple WT GISTs, FGF4 overexpression is not due to an epigenetic mechanism but rather to the specific genomic structure of the duplication. Even if FGF4 overexpression is driven by different molecular mechanisms, these findings support an increasing biologic relevance of the FGFR pathway in WT GISTs, both in SDH-deficient and quadruple WT GISTs, suggesting that it may be a common therapeutic target.
Collapse
Affiliation(s)
- Milena Urbini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Annalisa Astolfi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center (CIRC), University of Bologna, Bologna, Italy
| | - Margherita Nannini
- Division of Oncology, Azienda Ospedaliero Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Angela Schipani
- "Giorgio Prodi" Cancer Research Center (CIRC), University of Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialized Medicine, University of Bologna, Bologna, Italy
| | | | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028, Rionero in Vulture, PZ, Italy
| | - Massimo Del Gaudio
- Department of Organ Insufficiencies and Transplantation, General Surgery and Transplantation, S. Orsola-Malpighi University Hospital, 40138, Bologna, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Elisa Gruppioni
- Laboratory of Oncologic Molecular Pathology, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Maria Abbondanza Pantaleo
- "Giorgio Prodi" Cancer Research Center (CIRC), University of Bologna, Bologna, Italy.,Division of Oncology, Azienda Ospedaliero Universitaria di Bologna, Via Albertoni 15, Bologna, Italy.,Department of Experimental, Diagnostic and Specialized Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|