1
|
Lu C, Li E, Liu R, Chang N, Lai Y, Wu Y, Wu W, Chen Z, Ling J, Zhao J, Mao Z. The Candida quercitrusa strain Cq-C08 induces plant resistance to root-knot nematodes. Front Microbiol 2025; 16:1546583. [PMID: 40313413 PMCID: PMC12043707 DOI: 10.3389/fmicb.2025.1546583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction Root-knot nematodes (RKNs), belonging to the genus Meloidogyne, are plant parasitic nematodes with a broad host range, causing substantial economic losses annually. The selection and utilization of novel biological control resources are crucial for managing RKNs diseases. Methods This study isolated Candida quercitrusa Cq-C08 from rhizosphere soil, which the efficacy of Cq-C08 against Meloidogyne incognita was investigated through laboratory experiments, pot and plot trials, and analysis of the transcriptomic data from cucumber roots treated with Cq-C08. Results and discussion This study isolated Candida quercitrusa Cq-C08 from rhizosphere soil, and a series of experiments confirmed that the fermentation broth had a lethal rate of 100% against M. incognita J2s within 12 h and exhibited a significant repellent effect on the nematodes. In pot and plot tests, the strain Cq-C08 achieved a control effect over 50% against M. incognita and significantly promoted cucumber (Cucumis sativus, Zhongnong No. 6, China) growth. Inoculation experiments confirmed that the Cq-C08 strain could activate key immune signaling pathways of salicylic acid (SA) and jasmonic acid (JA). Split-root tests showed significant induced resistance of cucumber to M. incognita by 32.3%. Comparative transcriptome analysis confirmed that strain Cq-C08 could regulate the host's basal immune response and oxidative burst response through SA, JA, and ethylene (ET) signaling pathways, and alter secondary metabolism, activating the synthesis of cucurbitacin and auxins, which promotes plant immune regulation and growth. These results prove that C. quercitrusa Cq-C08 has high control effects against M. incognita and the potential to be developed into a biological control product against root-knot nematodes.
Collapse
Affiliation(s)
- Cuihua Lu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Erfeng Li
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Rui Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nv Chang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqing Lai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weilong Wu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Zhukan Chen
- Hangzhou Fuyang District Agriculture and Rural Bureau, Hangzhou, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Chen Y, Liu Q, Sun X, Liu L, Zhao J, Yang S, Wang X, Quentin M, Abad P, Favery B, Jian H. Meloidogyne enterolobii MeMSP1 effector targets the glutathione-S-transferase phi GSTF family in Arabidopsis to manipulate host metabolism and promote nematode parasitism. THE NEW PHYTOLOGIST 2023; 240:2468-2483. [PMID: 37823217 DOI: 10.1111/nph.19298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Meloidogyne enterolobii is an emerging root-knot nematode species that overcomes most of the nematode resistance genes in crops. Nematode effector proteins secreted in planta are key elements in the molecular dialogue of parasitism. Here, we show the MeMSP1 effector is secreted into giant cells and promotes M. enterolobii parasitism. Using co-immunoprecipitation and bimolecular fluorescent complementation assays, we identified glutathione-S-transferase phi GSTFs as host targets of the MeMSP1 effector. This protein family plays important roles in plant responses to abiotic and biotic stresses. We demonstrate that MeMSP1 interacts with all Arabidopsis GSTF. Moreover, we confirmed that the N-terminal region of AtGSTF9 is critical for its interaction, and atgstf9 mutant lines are more susceptible to root-knot nematode infection. Combined transcriptome and metabolome analyses showed that MeMSP1 affects the metabolic pathways of Arabidopsis thaliana, resulting in the accumulation of amino acids, nucleic acids, and their metabolites, and organic acids and the downregulation of flavonoids. Our study has shed light on a novel effector mechanism that targets plant metabolism, reducing the production of plant defence-related compounds while favouring the accumulation of metabolites beneficial to the nematode, and thereby promoting parasitism.
Collapse
Affiliation(s)
- Yongpan Chen
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Qian Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572024, China
| | - Xuqian Sun
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Lei Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Shanshan Yang
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiangfeng Wang
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Heng Jian
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Kim JH, Lee BM, Kang MK, Park DJ, Choi IS, Park HY, Lim CH, Son KH. Assessment of nematicidal and plant growth-promoting effects of Burkholderia sp. JB-2 in root-knot nematode-infested soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1216031. [PMID: 37538060 PMCID: PMC10394650 DOI: 10.3389/fpls.2023.1216031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Root-knot nematodes (RKN), Meloidogyne spp., are plant-parasitic nematodes that are responsible for considerable economic losses worldwide, because of the damage they cause to numerous plant species and the inadequate biological agents available to combat them. Therefore, developing novel and eco-friendly nematicides is necessary. In the present study, Burkholderia sp. JB-2, isolated from RKN-infested rhizosphere soil in South Korea, was evaluated to determine its nematicidal and plant growth-promoting effects under in vitro and in vivo conditions. Cell-free filtrates of the JB-2 strain showed high levels of nematicidal activity against second-stage juveniles (J2) of M. incognita, with 87.5% mortality following two days of treatment. In addition, the assessment of the activity against other six plant parasitic nematodes (M. javanica, M. hapla, M. arenaria, Ditylenchus destructor, Aphelenchoides subtenuis, and Heterodera trifolii) showed that the cell-free filtrates have a broad nematicidal spectrum. The three defense-responsive (MiMIF-2, MiDaf16-like1, and MiSkn1-like1) genes were activated, while Mi-cm-3 was downregulated when treated with cell-free filtrates of JB-2 cultures on J2. The greenhouse experiments suggested that the cell-free filtrates of the JB-2 strain efficiently controlled the nematode population in soil and egg mass formations of M. incognita in tomato (Solanum lycopersicum L., cv. Rutgers). An improvement in the host plant growth was observed, in which the shoot length and fresh weights of shoots and roots increased. The treatment with 10% of JB-2 cell-free filtrates significantly upregulated the expression levels of plant defenses (SlPR1, SlPR5, and SlPAL) and growth-promoting (ACO1, Exp18, and SlIAA1) genes compared with the corresponding parameters of the control group. Therefore, JB-2 could be a promising candidate for the sustainable management of RKN.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Byeong-Min Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Min-Kyoung Kang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong-Jin Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - In-Soo Choi
- Nematode Research Center, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Ho-Yong Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chi-Hwan Lim
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kwang-Hee Son
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Liu R, Chen M, Liu B, Huang K, Mao Z, Li H, Zhao J. A root-knot nematode effector manipulates the rhizosphere microbiome for establishing parasitism relationship with hosts. Front Microbiol 2023; 14:1217863. [PMID: 37538840 PMCID: PMC10395084 DOI: 10.3389/fmicb.2023.1217863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Root-knot nematode (RKN; Meloidogyne spp.) is one of the most infamous soilborne plant diseases, causing severe crop losses every year. Effector proteins secreted by RKNs play crucial roles during plant-nematode interaction. However, less is known about whether RKN effector proteins can impact the rhizosphere microbial environment. Methods In this study, we investigated the rhizosphere microbiome community of MiMIF-2 (a plant immunity-modulating effector) transgenic Arabidopsis thaliana with or without nematode infection using the Illumina high-throughput sequencing analysis. Results and discussion The results showed that the bacterial species richness index increased, while the fungi species richness index decreased in M. incognita-infected MiMIF-2 transgenic A. thaliana plants. The relative abundance of genera such as Clitopilus, Komagataeibacter, Lactobacillus, Prevotella, Moritella, Vibrio, Escherichia-Shigella, and Pseudomonas was reduced in MiMIF-2 transgenic A. thaliana plants compared to wild type, but was significantly increased after inoculation with M. incognita. The Cluster of Orthologous Genes (COG) function classification analysis revealed a decrease in the relative abundance of defense mechanisms, secondary metabolite biosynthesis, transport, and nematode infection catabolism-related functions in MiMIF-2 lines compared to the wild type. These differences may be the reason for the increased susceptibility of MiMIF-2 transgenic A. thaliana to nematode infection. Our results provide a new insight into RKN effector proteins and their association with the microbial community, host, and plant pathogens, which will lead to the exploration of new innovative ideas for future biological control of RKNs.
Collapse
Affiliation(s)
- Rui Liu
- College of Plant Protection, Gansu Agricultural University/Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, Gansu, China
| | - Mengfei Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boliang Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kaiwei Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huixia Li
- College of Plant Protection, Gansu Agricultural University/Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, Gansu, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Siddique S, Coomer A, Baum T, Williamson VM. Recognition and Response in Plant-Nematode Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:143-162. [PMID: 35436424 DOI: 10.1146/annurev-phyto-020620-102355] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant-parasitic nematodes spend much of their lives inside or in contact with host tissue, and molecular interactions constantly occur and shape the outcome of parasitism. Eggs of these parasites generally hatch in the soil, and the juveniles must locate and infect an appropriate host before their stored energy is exhausted. Components of host exudate are evaluated by the nematode and direct its migration to its infection site. Host plants recognize approaching nematodes before physical contact through molecules released by the nematodes and launch a defense response. In turn, nematodes deploy numerous mechanisms to counteract plant defenses. This review focuses on these early stages of the interaction between plants and nematodes. We discuss how nematodes perceive and find suitable hosts, how plants perceive and mount a defense response against the approaching parasites, and how nematodes fight back against host defenses.
Collapse
Affiliation(s)
- Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, California, USA;
| | - Alison Coomer
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Thomas Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
6
|
Pu W, Xiao K, Luo S, Zhu H, Yuan Z, Gao C, Hu J. Characterization of Five Meloidogyne incognita Effectors Associated with PsoRPM3. Int J Mol Sci 2022; 23:ijms23031498. [PMID: 35163425 PMCID: PMC8836280 DOI: 10.3390/ijms23031498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 12/04/2022] Open
Abstract
Root-knot nematodes (RKNs) are devastating parasites that invade thousands of plants. In this study, five RKN effectors, which might interact with Prunussogdiana resistance protein PsoRPM3, were screened and identified. In situ hybridisation results showed that MiCal, MiGST_N_4, MiEFh and MiACPS are expressed in the subventral oesophageal glands (SvG), and MiTSPc hybridization signals are found in the dorsal esophageal gland (DG) of Meloidogyne incognita in the pre-J2. RT-qPCR data indicated that the expression of MiCal, MiGST_N_4, MiEFh, and MiACPS genes are highly expressed in M. incognita of pra-J2 and J3/J4 stages. The expression of MiTSPc increased significantly in the female stage of M. incognita. Moreover, all effectors found in this study localize in the cytoplasm and nucleus when transiently expressed in plant cells. In addition, MiGST_N_4, MiEFh, MiACPS and MiTSPc can elicit the ROS burst and strong hypersensitive response (HR), as well as significant ion leakage. Our data suggest that MiGST_N_4, MiEFh, MiACPS and MiTSPc effectors may be involved in triggering the immune response of the host plant.
Collapse
|