1
|
Ahmad I, Sun X, Yu Y, Jia F, Li Y, Lv Q, Hu Y, Bao F, He Y. PpBOR1 is critical for the excess borate tolerance of Physcomitrium patens. PLANT CELL REPORTS 2025; 44:81. [PMID: 40121589 DOI: 10.1007/s00299-025-03473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
KEY MESSAGE Functional analysis of BORs in Physcomitrium patens indicates that both PpBOR1 and PpBOR2 possess boron efflux transporter activity, and PpBOR1 is essential for the plant's tolerance to excessive boron stress. Boron (B), an essential plant micronutrient, is crucial for achieving optimal agricultural yield. Although the function of the BOR family proteins as borate efflux transporters has been established in tracheophytes, the role of their counterparts in non-vascular plants has not been thoroughly investigated. Our phylogenetic analysis reveals that bryophyte BOR proteins originated from the basal bryophytes Takakia and Sphagnum, and can be classified into two subclasses. There are two BOR homologs in P. patens: PpBOR1 and PpBOR2, which belong to different subclades. The PpBOR1 and PpBOR2 genes are predominantly expressed in gametophores, with PpBOR1 exhibiting significantly higher expression levels than PpBOR2. Both proteins localize at the plasma membrane and can export borate from yeast cells. Disruption of PpBOR2 expression does not affect plant growth under normal conditions. However, PpBOR1-knockout gametophores exhibit stunted growth under excess boron conditions, whereas PpBOR1-overexpressing plants show enhanced tolerance compared to wild-type plants. In summary, our research suggests that BOR homologous proteins in P. patens have borate efflux activities similar to those of the BOR family members in angiosperms. PpBOR1 is critical in conferring tolerance to excessive boron stress in P. patens.
Collapse
Affiliation(s)
- Ishfaq Ahmad
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuejia Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yangyang Yu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Fangni Jia
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yizuo Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yong Hu
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Fang Bao
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
2
|
Jiang Z, Liu L, Wang S, Ye X, Liu Z, Xu F. Transcriptional Analysis Reveals the Differences in Response of Floral Buds to Boron Deficiency Between Two Contrasting Brassica napus Varieties. PLANTS (BASEL, SWITZERLAND) 2025; 14:859. [PMID: 40265801 DOI: 10.3390/plants14060859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
Boron (B) is an essential micronutrient for the development of crops, and its reproductive stage is particularly sensitive to B deficiency. Brassica napus L., as an important oil-crop species, is extremely vulnerable to B deficiency. The typical B-deficient symptom of "flowering without seed setting" usually results in severe yield loss. However, few studies have focused on the response of the reproductive organs to B deficiency. In this study, the B-efficient variety "Zhongshuang 11" (ZS11) and the B-inefficient variety "Westar 10" (W10) of Brassica napus were selected to be cultivated at the developmental stage (BBCH15) in a pot experiment, both with and without B supply. Clear phenotype differences in B deficiency between the two varieties' flowers appeared only at the reproductive stage, and only W10 showed symptoms of delayed flower opening, stigma exsertion, and resulted in abortion. Transcriptome analysis for the early buds of both varieties between B supply (+B) and free (-B) treatments revealed that W10 had more differentially expressed genes (DEGs) corresponding to its greater susceptibility to -B. As two potential mechanisms to improve B-efficient utilization, we focused on analyzing the expression profiles of B transporter-related genes and phytohormone metabolism-related genes. BnaC05.NIP7;1, BnaC08.NIP3;1, and BnaBOR2s were identified as the key genes which could enhance the capacity of B translocation to buds of ZS11. Additionally, combined with a phytohormone concentration measurement, we showed that a significant increase in IAA and a drastic decrease in JA could predominantly lead to the abnormal development of W10's buds. BnaC02.NIT2 (Nitrilase 2) and BnaKAT5s (3-Ketoacyl-CoA Thiolase 5), which are IAA and JA biosynthesis genes, respectively, could be the key genes responsible for the changes in IAA and JA concentrations in W10's buds under -B. These candidate genes may regulate the genotype differences in the response of the rapeseed reproductive stage to -B between different B-efficient varieties. It also has potential to breed rapeseed varieties with B-efficient utilization in the reproductive stage, which would improve the seed yield under -B condition.
Collapse
Affiliation(s)
- Zhexuan Jiang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Lan Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangsheng Ye
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaojun Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Yang J, Wei H, Lei P, Qin J, Tian H, Fan D, Zhang J, Qin Z, Huang X, Liu X. Effects of Exogenous Boron on Salt Stress Responses of Three Mangrove Species. PLANTS (BASEL, SWITZERLAND) 2024; 14:79. [PMID: 39795337 PMCID: PMC11722763 DOI: 10.3390/plants14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Salt stress is common but detrimental to plant growth, even in mangroves that live in saline areas. Boron (B) is an essential micronutrient that performs an important role in many functions in plants; however, its protective role under salt stress is poorly understood, especially in long-lived woody plants. In this study, we conducted an indoor experiment under simulated tidal conditions with four treatments (10‱ salinity, 40‱ salinity, 40‱ salinity + 100 μM B, and 40‱ salinity + 500 μM B) and three mangrove species (Avicennia marina, Aegiceras corniculatum, and Bruguiera gymnorrhiza) to investigate the effects of exogenous B on salt tolerance in plant growth, morphology, physiology, and leaf anatomy. The results showed that exogenous low-concentration B treatment (100 μM B) improved the performance of mangrove species under high salinity stress, especially in terms of physiology and leaf anatomy, while high-concentration B treatment (500 μM B) had adverse effects. Additionally, we found that the response to exogenous B varied among species in physiology and leaf anatomy, such as proline, malondialdehyde, activity of antioxidant enzymes, palisade tissue, and spongy tissue, which may be related to the salt tolerance of different species. This study may provide useful insights into the alleviation of salt stress by B in mangrove growth and development, which may facilitate mangrove cultivation and afforestation in a saline environment.
Collapse
Affiliation(s)
- Jingjun Yang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China;
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| | - Haihang Wei
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| | - Pifeng Lei
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Jie Qin
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| | - Hongdeng Tian
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| | - Donghan Fan
- Qinzhou Forestry Research Institute, Qinzhou 535012, China;
| | - Jihui Zhang
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| | - Zhenkai Qin
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| | - Xiaoying Huang
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China;
| | - Xiu Liu
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| |
Collapse
|
4
|
Ullah I, Toor MD, Yerlikaya BA, Mohamed HI, Yerlikaya S, Basit A, Rehman AU. High-temperature stress in strawberry: understanding physiological, biochemical and molecular responses. PLANTA 2024; 260:118. [PMID: 39419853 DOI: 10.1007/s00425-024-04544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
MAIN CONCLUSION Heat stress reduces strawberry growth and fruit quality by impairing photosynthesis, disrupting hormone regulation, and altering mineral nutrition. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic and metabolomic under high temperatures. Garden strawberry is a globally cultivated, economically important fruit crop highly susceptible to episodic heat waves and chronically rising temperatures associated with climate change. Heat stress negatively affects the growth, development, and quality of strawberries. Elevated temperatures affect photosynthesis, respiration, water balance, hormone signaling, and carbohydrate metabolism in strawberries. Heat stress reduces the size and number of leaves, the number of crowns, the differentiation of flower buds, and the viability of pollen and fruit set, ultimately leading to a lower yield. On a physiological level, heat stress reduces membrane stability, increases the production of reactive oxygen species, and reduces the antioxidant capacity of strawberries. Heat-tolerant varieties have better physiological and biochemical adaptation mechanisms compared to heat-sensitive varieties. Breeding heat-tolerant strawberry cultivars involves selection for traits such as increased leaf temperature, membrane thermostability, and chlorophyll content. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic, metabolomic, and ionomic reprogramming at high temperatures. Integrative-omics approaches combine multiple omics datasets to obtain a systemic understanding of the responses to heat stress in strawberries. This article summarizes the deciphering of strawberry responses to heat stress using physiological, biochemical, and molecular approaches that will enable the development of resilient adaptation strategies that sustain strawberry production under global climate change.
Collapse
Affiliation(s)
- Izhar Ullah
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Muhammad Danish Toor
- Department of Botany, Faculty of Science and Technology, İnstitute of Ecology and Earth Science's, Chair of Mycology, University of Tartu, Tartu, Estonia
- Department of Agrochemistry and Soil Science, Faculty of Agronomy, Agricultural University, Plovdiv, Bulgaria
| | - Bayram Ali Yerlikaya
- Department of Plant Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Seher Yerlikaya
- Department of Plant Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Abdul Basit
- Department of Horticultural Science, Kyungpook National University, 41566, Daegu, South Korea
| | - Attiq Ur Rehman
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, The University of Helsinki, 00790, Helsinki, Finland
| |
Collapse
|
5
|
Mamani-Huarcaya BM, Navarro-Gochicoa MT, Herrera-Rodríguez MB, Camacho-Cristóbal JJ, Ceacero CJ, Fernández Cutire Ó, González-Fontes A, Rexach J. Leaf Proteomic Analysis in Seedlings of Two Maize Landraces with Different Tolerance to Boron Toxicity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2322. [PMID: 37375947 DOI: 10.3390/plants12122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Boron (B) toxicity is an important stressor that negatively affects maize yield and the quality of the produce. The excessive B content in agricultural lands is a growing problem due to the increase in arid and semi-arid areas because of climate change. Recently, two Peruvian maize landraces, Sama and Pachía, were physiologically characterized based on their tolerance to B toxicity, the former being more tolerant to B excess than Pachía. However, many aspects regarding the molecular mechanisms of these two maize landraces against B toxicity are still unknown. In this study, a leaf proteomic analysis of Sama and Pachía was performed. Out of a total of 2793 proteins identified, only 303 proteins were differentially accumulated. Functional analysis indicated that many of these proteins are involved in transcription and translation processes, amino acid metabolism, photosynthesis, carbohydrate metabolism, protein degradation, and protein stabilization and folding. Compared to Sama, Pachía had a higher number of differentially expressed proteins related to protein degradation, and transcription and translation processes under B toxicity conditions, which might reflect the greater protein damage caused by B toxicity in Pachía. Our results suggest that the higher tolerance to B toxicity of Sama can be attributed to more stable photosynthesis, which can prevent damage caused by stromal over-reduction under this stress condition.
Collapse
Affiliation(s)
- Betty Maribel Mamani-Huarcaya
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
- Laboratorio de Biotecnología Vegetal, Escuela de Agronomía, Facultad Ciencias Agropecuarias, Universidad Nacional Jorge Basadre Grohmann, Tacna 23000, Peru
| | | | | | - Juan José Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Carlos Juan Ceacero
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Óscar Fernández Cutire
- Departamento de Agronomía, Facultad Ciencias Agropecuarias, Universidad Nacional Jorge Basadre Grohmann, Tacna 23000, Peru
| | - Agustín González-Fontes
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Jesús Rexach
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| |
Collapse
|
6
|
Arredondo G, Bonomelli C. Effect of Three Boron Concentrations in Soil on Growth and Physiology in Sweet Cherry Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:1240. [PMID: 36986928 PMCID: PMC10057428 DOI: 10.3390/plants12061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Boron (B) is an essential element for plants. B availability depends on the physical and chemical characteristics of the soil and the quality of irrigation water. Under natural conditions, both toxic and deficit concentrations can occur and should be managed for crop production. However, the range between deficiency and toxicity is narrow. The objective of this study was to determine the response of cherry trees to deficient (0.04 mg kg-1), adequate (1.1 mg kg-1), and toxic (3.75 mg kg-1) B concentrations in the soil by measuring growth, biomass, photosynthetic parameters, visual symptoms, and morphological changes. Plants treated with a toxic dose had more spurs and shorter internodes than those treated with adequate and deficient doses. The white root weight (50.5 g) at low B concentrations had the most roots compared with the adequate (33.0 g) and toxic (22.0 g) concentrations. The stem weight and biomass partitioning were higher for white roots and stems at B-deficient and -adequate doses than at toxic doses. The net photosynthesis (Pn) and transpiration rate (E) were significantly higher in plants with adequate concentrations of B. Stomatal conductance (Gs) was higher in B-deficient plants. Morphological and visual differences were observed between treatments. The results showed that it is essential to adequately manage B in cherry crops to avoid the adverse effects of both low and toxic concentrations.
Collapse
Affiliation(s)
| | - Claudia Bonomelli
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
7
|
Guo H, Bi X, Wang Z, Jiang D, Cai M, An M, Xia Z, Wu Y. Reactive oxygen species-related genes participate in resistance to cucumber green mottle mosaic virus infection regulated by boron in Nicotiana benthamiana and watermelon. FRONTIERS IN PLANT SCIENCE 2022; 13:1027404. [PMID: 36438146 PMCID: PMC9691971 DOI: 10.3389/fpls.2022.1027404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Cucumber green mottle mosaic virus (CGMMV) infection causes acidification and rot of watermelon flesh, resulting in serious economic losses. It is widely reported the interaction relationship between boron and reactive oxygen species (ROS) in regulating normal growth and disease resistance in plants. Our previous results demonstrated that exogenous boron could improve watermelon resistance to CGMMV infection. However, the roles of ROS-related genes regulated by boron in resistance to CGMMV infection are unclear. Here, we demonstrated that CGMMV symptoms were alleviated, and viral accumulations were decreased by boron application in Nicotiana benthamiana, indicating that boron contributed to inhibiting CGMMV infection. Meanwhile, we found that a number of differentially expressed genes (DEGs) associated with inositol biosynthesis, ethylene synthesis, Ca2+ signaling transduction and ROS scavenging system were up-regulated, while many DEGs involved in ABA catabolism, GA signal transduction and ascorbic acid metabolism were down-regulated by boron application under CGMMV infection. Additionally, we individually silenced nine ROS-related genes to explore their anti-CGMMV roles using a tobacco rattle virus (TRV) vector. The results showed that NbCat1, NbGME1, NbGGP and NbPrx Q were required for CGMMV infection, while NbGST and NbIPS played roles in resistance to CGMMV infection. The similar results were obtained in watermelon by silencing of ClCat, ClPrx or ClGST expression using a pV190 vector. This study proposed a new strategy for improving plant resistance to CGMMV infection by boron-regulated ROS pathway and provided several target genes for watermelon disease resistance breeding.
Collapse
Affiliation(s)
- Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Bi
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dong Jiang
- Green Agricultural Technology Center of Liaoning Province, Shenyang, China
| | - Ming Cai
- Green Agricultural Technology Center of Liaoning Province, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
8
|
Wang Y, Niu Z, Hu X, Wu X, Yang Z, Hao C, Zhou M, Yang S, Dong N, Liu M, Ru Z. Molecular characterization of the genome-wide BOR transporter family and their responses to boron conditions in common wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:997915. [PMID: 36275596 PMCID: PMC9583536 DOI: 10.3389/fpls.2022.997915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Boron (B) deficiency is an agricultural problem that causes significant yield losses in many countries. B transporters (BORs) are responsible for B uptake and distribution and play important roles in yield formation. A comprehensive analysis of the BOR family members in common wheat is still lacking. In the present study, to clarify the molecular characterization and response to B status, genome-wide TaBOR genes and expression patterns were investigated. Fourteen TaBOR genes were identified in common wheat by a homology search. The corresponding phylogenetic tree indicated that 14 TaBOR genes were separately classified into subfamilies of TaBOR1, TaBOR3, and TaBOR4. All TaBOR genes had 12-14 extrons and 11-13 introns. Most TaBOR proteins contained 10 conserved motifs, and motifs 1, 2, 3, 4, and 6 constituted the conserved bicarbonate (HCO3 -) domain. Fourteen TaBOR genes were mapped on 13 chromosomes mainly distributed in the first, third, fifth, and seventh homologous groups. The promoters of TaBOR genes consisted of phytohormones, light responses, and stress-related cis-elements. GO analysis indicated that TaBOR genes were enriched in terms of transmembrane transport and ion homeostasis. TaBOR genes showed diverse expression profiles in different tissues. The members of the TaBOR1 subfamily showed high expression in grains, leaves, roots, stems, and spikes, but members of the TaBOR4 subfamily were highly expressed only in spikes and grains. RT-qPCR indicated that TaBOR1-5A, TaBOR1-5B, and TaBOR1-5D were induced by low B concentrations and had much higher expression in roots than in shoots. TaBOR3-3A, TaBOR3-3B, TaBOR3-3D, TaBOR4-1A, TaBOR4-1B, TaBOR4-1D, and TaBOR3-4B were induced by low and high B concentrations and had high expression in roots and shoots. TaBOR3-4D and TaBOR3-7B were upregulated by low and high B concentrations, respectively, but had expression only in roots. Our results provide basic information on the TaBOR family, which is beneficial for elucidating the functions of TaBOR genes to overcome the problem of B deficiency.
Collapse
Affiliation(s)
- Yuquan Wang
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zhipeng Niu
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xigui Hu
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xiaojun Wu
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zijun Yang
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Chenyan Hao
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Mengxue Zhou
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Shumin Yang
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Na Dong
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Mingjiu Liu
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zhengang Ru
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
9
|
Choudhary S, Zehra A, Mukarram M, Wani KI, Naeem M, Khan MMA, Aftab T. Salicylic acid-mediated alleviation of soil boron toxicity in Mentha arvensis and Cymbopogon flexuosus: Growth, antioxidant responses, essential oil contents and components. CHEMOSPHERE 2021; 276:130153. [PMID: 33714878 DOI: 10.1016/j.chemosphere.2021.130153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 05/18/2023]
Abstract
Boron (B) toxicity is a notable abiotic hindrance that restricts crop productivity by disturbing several physiological and biochemical processes in plants. This study was aimed to elucidate the role of salicylic acid (SA) in conferring tolerance to B stress in Mentha arvensis and Cymbopogon flexuosus. Boron toxicity led to a considerable decrease in shoot height and root length, fresh and dry mass of shoot and root, and physiological and biochemical parameters. However, exogenously applied SA relieved the adverse effects caused by B toxicity and led to an increase in growth parameters under B stress and non-stress conditions. The treatment of B resulted in its increased accumulation in roots and shoots of both the plants which, in turn, caused oxidative damage as evident by increased content of malondialdehyde and catalase, peroxidase, superoxide dismutase and glutathione reductase enzyme activities. However, exogenous SA supply significantly affected antioxidant enzyme activities and protected the plants from excess B. Moreover, the essential oil content of two selected plants declined under B toxicity and significantly enhanced in SA-treated stressed plants. The contents of menthol and menthyl acetate in M. arvensis were lowered in B stressed plants which significantly improved in SA treated B-stressed and in their respective SA alone treatment. Similarly, citral-A and citral-B content of C. flexuosus declined under B toxicity, however, SA reversed the negative effects of B toxicity on essential oil components. This assessment stipulated the promising role of exogenously applied SA in alleviating B toxicity in M. arvensis and C. flexuosus by improving antioxidant machinery and limiting B uptake which protects the structural integrity of leaves and also helps in increasing essential oil content.
Collapse
Affiliation(s)
- Sadaf Choudhary
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Andleeb Zehra
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Mukarram
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Kaiser Iqbal Wani
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|