1
|
Song J, Wang C, Zhao T, Zhang Y, Xing J, Zhao X, Zhang Y, Zhang Z. Multi-omics approaches for biomarker discovery and precision diagnosis of prediabetes. Front Endocrinol (Lausanne) 2025; 16:1520436. [PMID: 40162315 PMCID: PMC11949806 DOI: 10.3389/fendo.2025.1520436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Recent advancements in multi-omics technologies have provided unprecedented opportunities to identify biomarkers associated with prediabetes, offering novel insights into its diagnosis and management. This review synthesizes the latest findings on prediabetes from multiple omics domains, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, and radiomics. We explore how these technologies elucidate the molecular and cellular mechanisms underlying prediabetes and analyze potential biomarkers with predictive value in disease progression. Integrating multi-omics data helps address the limitations of traditional diagnostic methods, enabling early detection, personalized interventions, and improved patient outcomes. However, challenges such as data integration, standardization, and clinical validation and translation remain to be resolved. Future research leveraging artificial intelligence and machine learning is expected to further enhance the predictive power of multi-omics technologies, contributing to the precision diagnosis and tailored management of prediabetes.
Collapse
Affiliation(s)
- Jielin Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
| | - Chuanfu Wang
- Department of Encephalopathy, Liangping District Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Tong Zhao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
| | - Yu Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
| | - Jixiang Xing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
| | - Xuelian Zhao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
| | - Yunsha Zhang
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Shi Y, Qu F, Zeng S, Wang X, Liu Y, Zhang Q, Yuan D, Yuan C. Targeting long non-coding RNA H19 as a therapeutic strategy for liver disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:1-9. [PMID: 39357625 DOI: 10.1016/j.pbiomolbio.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The liver has the function of regulating metabolic equilibrium in the human body, and the majority of liver disorders are chronic conditions that can significantly impair health. Recent research has highlighted the critical role of long noncoding RNAs (lncRNAs) in liver disease pathogenesis. LncRNA H19, an endogenous noncoding single-stranded RNA, exerts its influence through epigenetic modifications and affects various biological processes. This review focuses on elucidating the key molecular mechanisms underlying the regulation of H19 during the progression and advancement of liver diseases, aiming to highlight H19 as a potential therapeutic target and provide profound insights into the molecular underpinnings of liver pathologies.
Collapse
Affiliation(s)
- Yulan Shi
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Fenghua Qu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Shiyun Zeng
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University Yichang, 443002, China
| | - Xinchen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Yuting Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Qirui Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University Yichang, 443002, China.
| |
Collapse
|
3
|
Ageeli Hakami M. Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1. Saudi J Biol Sci 2024; 31:103976. [PMID: 38510528 PMCID: PMC10951089 DOI: 10.1016/j.sjbs.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The epigenetic regulation of lncRNA TUG1 has garnered significant attention in the context of diabetes and its associated disorders. TUG1's multifaceted roles in gene expression modulation, and cellular differentiation, and it plays a major role in the growth of diabetes and the issues that are related to it due to pathological processes. In diabetes, aberrant epigenetic modifications can lead to dysregulation of TUG1 expression, contributing to disrupted insulin signaling, impaired glucose metabolism, and beta-cell dysfunction. Moreover, it has been reported that TUG1 contributes to the development of problems linked to diabetes, such as nephropathy, retinopathy, and cardiovascular complications, through epigenetically mediated mechanisms. Understanding the epigenetic regulations of TUG1 offers novel insights into the primary molecular mechanisms of diabetes and provides a possible path for healing interventions. Targeting epigenetic modifications associated with TUG1 holds promise for restoring proper gene expression patterns, ameliorating insulin sensitivity, and mitigating the inception and development of diabetic associative diseases. This review highlights the intricate epigenetic landscape that governs TUG1 expression in diabetes, encompassing DNA methylation and alterations in histone structure, as well as microRNA interactions.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Mo F, An T, Yang N, Zhao D, Zhang D, Jiang G, Gao S. Bioinformatic analysis and construction of competitive endogenous RNA network reveals protective effect of Jiangtang Sanhao Formula on the liver of diabetic mice. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2024; 10:100408. [DOI: 10.1016/j.prmcm.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Bin Wang, Yuan C, Qie Y, Dang S. Long non-coding RNAs and pancreatic cancer: A multifaceted view. Biomed Pharmacother 2023; 167:115601. [PMID: 37774671 DOI: 10.1016/j.biopha.2023.115601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease with a 5-year survival rate of only 10%. Families with PC are at greater risk, as are type 2 diabetes, pancreatitis, and other factors. Insufficient early detection methods make this cancer have a poor prognosis. Additionally, the molecular mechanisms underlying PC development remain unclear. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to PC pathology,which may control gene expression by recruiting histone modification complexes to chromatin and interacting with proteins and RNAs. In recent studies, abnormal regulation of lncRNAs has been implicated in PC proliferation, metastasis, invasion, angiogenesis, apoptosis, and chemotherapy resistance suggesting potential clinical implications. The paper reviews the progress of lncRNA research in PC about diabetes mellitus, pancreatitis, cancer metastasis, tumor microenvironment regulation, and chemoresistance. Furthermore, lncRNAs may serve as potential therapeutic targets and biomarkers for PC diagnosis and prognosis. This will help improve PC patients' survival rate from a lncRNA perspective.
Collapse
Affiliation(s)
- Bin Wang
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Chang Yuan
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Yinyin Qie
- General Surgery Department, Yixing People's Hospital, Wuxi, Jiangsu 214200, China
| | - Shengchun Dang
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China; Siyang Hospital, Suqian, Jiangsu 223700, China.
| |
Collapse
|
6
|
Ali HS, Kamel MM, Agwa SHA, Hakeem MSA, Meteini MSE, Matboli M. Analysis of mRNA-miRNA-lncRNA differential expression in prediabetes/type 2 diabetes mellitus patients as potential players in insulin resistance. Front Endocrinol (Lausanne) 2023; 14:1131171. [PMID: 37223012 PMCID: PMC10200895 DOI: 10.3389/fendo.2023.1131171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/10/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a major global health concern. It usually develops gradually and is frequently preceded by undetectable pre-diabetes mellitus (pre-DM) stage. The purpose of this study was to identify a novel set of seven candidate genes associated with the pathogenesis of insulin resistance (IR) and pre-DM, followed by their experimental validation in patients' serum samples. Methods We used the bioinformatics tools and through a two-step process, we first identified and verified two mRNA candidate genes linked to insulin resistance molecular pathogenesis. Second, we identified a non-coding RNAs related to the selected mRNAs and implicated in the insulin resistance molecular pathways followed by pilot study for the RNA panel differential expression in 66 patients with T2DM, 49 individuals with prediabetes and 45 matched controls using real time PCR. Results The levels of expression of TMEM173 and CHUK mRNAs, hsa-miR (-611, -5192, and -1976) miRNAs gradually increased from the healthy control group to the prediabetic group, reaching their maximum levels in the T2DM group (p <10-3), whereas the levels of expression of RP4-605O3.4 and AC074117.2 lncRNAs declined gradually from the healthy control group to the prediabetic group, reaching their lowest levels in the T2DM group (p <10-3). TMEM173, CHUK mRNAs, hsa_miR (-611 & -1976) and RP4-605O3.4 lncRNA were useful in distinguishing insulin resistant from insulin sensitive groups. miR_611 together with RP4-605O3.4 exhibited significant difference in good versus poor glycemic control groups. Discussion The presented study provides an insight about this RNA based STING/NOD/IR associated panel that could be used for PreDM-T2DM diagnosis and also as a therapeutic target based on the differences of its expression level in the pre-DM and T2DM stages.
Collapse
Affiliation(s)
- Hebatalla Said Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Marwa Mostafa Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Sara H. A. Agwa
- Clinical Pathology, Medical Ain Shams Research Institute, Ain Shams University, Cairo, Egypt
| | | | | | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
7
|
Fatima S, Khan DA, Fatima F, Aamir M, Ijaz A, Hafeez A. Role of δ-tocotrienol and resveratrol supplementation in the regulation of micro RNAs in patients with metabolic syndrome: a randomized controlled trial. Complement Ther Med 2023; 74:102950. [PMID: 37086927 DOI: 10.1016/j.ctim.2023.102950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/13/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023] Open
Abstract
OBJECTIVE To determine the effect of δ-tocotrienol and resveratrol mixture (TRM) supplementation in comparison to placebo for 24 weeks, on the relative expression of miRNAs (miRNA-130b-5p, miRNA-221-5p, miR-15b-5p, miRNA-122-5p, and miRNA-376b-5p) in patients with Metabolic syndrome (MetS). DESIGN This randomized placebo-controlled trial was conducted at the tertiary care institute of the NUMS, Rawalpindi, Pakistan. A total of 82 adult MetS patients were enrolled and randomly grouped into the TRM group (n=41) and the Placebo group (n=41). Patients in the TRM group were given 400mg capsules (δ-tocotrienol 250mg; Resveratrol 150mg) and placebo received (cellulose 400mg capsule) twice daily for 24 weeks. RESULTS The TRM supplementation revealed a significant (p<0.001) upregulation of 3.05-fold in miRNA-130b-5p and 2.45-fold in miRNA-221-5p while miRNA-122-5p was downregulated by 2.22-fold as compared to placebo. No significant difference was observed in miRNA-15b-5p and miRNA-376b-5p. Moreover, TRM group participants with reverted MetS had significantly (p<0.05) upregulated miRNA-130b-5p, miRNA-221-5p, and downregulated miRNA-122-5p relative to non-reverted patients with MetS. CONCLUSION Daily TRM supplementation may improve metabolic syndrome by upregulated miR-130b-5p, which is involved in central obesity and inflammation, as well as miR-221-5p, which is involved in insulin resistance. Additionally, TRM downregulate of miRNA 122, which improved dyslipidemia.
Collapse
Affiliation(s)
- Safia Fatima
- Department of Chemical Pathology, Armed Forces Institute of Pathology (AFIP), National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | | | - Fozia Fatima
- Department of Health Professions Education, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Muhammad Aamir
- Department of Chemical Pathology, Armed Forces Institute of Pathology (AFIP).
| | - Aamir Ijaz
- Department of Chemical Pathology, Armed Forces Institute of Pathology (AFIP).
| | - Ayesha Hafeez
- Department of Chemical Pathology, Armed Forces Institute of Pathology (AFIP).
| |
Collapse
|
8
|
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide disease with rapidly increasing prevalence. This complex disorder caused by interplay between genetic predisposition factors, early developmental elements, diet and inactive lifestyle. Several researches have shown impact of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the pathogenesis of this disorder. Several miRNAs such as miR-126, miR-222-3p, miR-182, let-7b-5p, and miR-1-3p have been down-regulated in different biological sources of patients with T2DM. Some other miRNAs including miR-21, miR-30d, miR-148a-3p, miR-146b and miR-486 have the opposite trends. In addition, a number of lncRNAs such as LY86-AS, HCG27_201, VIM-AS1, CTBP1-AS2, CASC2, GAS5, LINC-PINT, and MALAT1 have been altered in the peripheral blood, serum samples or tissues obtained from patients with T2DM. Taken together, both miRNAs and lncRNAs contribute to the development of T2DM and might be applied as markers or therapeutic molecules for this disorder.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Eghtedarian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Yang W, Lyu Y, Xiang R, Yang J. Long Noncoding RNAs in the Pathogenesis of Insulin Resistance. Int J Mol Sci 2022; 23:ijms232416054. [PMID: 36555704 PMCID: PMC9785789 DOI: 10.3390/ijms232416054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Insulin resistance (IR), designated as the blunted response of insulin target tissues to physiological level of insulin, plays crucial roles in the development and progression of diabetes, nonalcoholic fatty liver disease (NAFLD) and other diseases. So far, the distinct mechanism(s) of IR still needs further exploration. Long non-coding RNA (lncRNA) is a class of non-protein coding RNA molecules with a length greater than 200 nucleotides. LncRNAs are widely involved in many biological processes including cell differentiation, proliferation, apoptosis and metabolism. More recently, there has been increasing evidence that lncRNAs participated in the pathogenesis of IR, and the dysregulated lncRNA profile played important roles in the pathogenesis of metabolic diseases including obesity, diabetes and NAFLD. For example, the lncRNAs MEG3, H19, MALAT1, GAS5, lncSHGL and several other lncRNAs have been shown to regulate insulin signaling and glucose/lipid metabolism in various tissues. In this review, we briefly introduced the general features of lncRNA and the methods for lncRNA research, and then summarized and discussed the recent advances on the roles and mechanisms of lncRNAs in IR, particularly focused on liver, skeletal muscle and adipose tissues.
Collapse
Affiliation(s)
- Weili Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yixiang Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
- Correspondence:
| |
Collapse
|
10
|
Angelescu MA, Andronic O, Dima SO, Popescu I, Meivar-Levy I, Ferber S, Lixandru D. miRNAs as Biomarkers in Diabetes: Moving towards Precision Medicine. Int J Mol Sci 2022; 23:12843. [PMID: 36361633 PMCID: PMC9655971 DOI: 10.3390/ijms232112843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 09/08/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease with many specifically related complications. Early diagnosis of this disease could prevent the progression to overt disease and its related complications. There are several limitations to using existing biomarkers, and between 24% and 62% of people with diabetes remain undiagnosed and untreated, suggesting a large gap in current diagnostic practices. Early detection of the percentage of insulin-producing cells preceding loss of function would allow for effective therapeutic interventions that could delay or slow down the onset of diabetes. MicroRNAs (miRNAs) could be used for early diagnosis, as well as for following the progression and the severity of the disease, due to the fact of their pancreatic specific expression and stability in various body fluids. Thus, many studies have focused on the identification and validation of such groups or "signatures of miRNAs" that may prove useful in diagnosing or treating patients. Here, we summarize the findings on miRNAs as biomarkers in diabetes and those associated with direct cellular reprogramming strategies, as well as the relevance of miRNAs that act as a bidirectional switch for cell therapy of damaged pancreatic tissue and the studies that have measured and tracked miRNAs as biomarkers in insulin resistance are addressed.
Collapse
Affiliation(s)
| | - Octavian Andronic
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irinel Popescu
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irit Meivar-Levy
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
| | - Sarah Ferber
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniela Lixandru
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Biochemistry, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
11
|
MicroRNA-134-5p and the Extent of Arterial Occlusive Disease Are Associated with Risk of Future Adverse Cardiac and Cerebral Events in Diabetic Patients Undergoing Carotid Artery Stenting for Symptomatic Carotid Artery Disease. Molecules 2022; 27:molecules27082472. [PMID: 35458670 PMCID: PMC9032654 DOI: 10.3390/molecules27082472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
There is little known about the prognostic value of serum microRNAs (miRs) in diabetic patients with symptomatic internal carotid artery disease (ICAS) who underwent stent supported angioplasty (PTA) for ICAS. The present study aimed to investigate expression levels of selected miRs for future major adverse cardiac and cerebral events (MACCE) as a marker in diabetic patients following ICAS-PTA. The expression levels of 11 chosen circulating serum miRs were compared in 37 diabetic patients with symptomatic ICAS and 64 control group patients with symptomatic ICAS, but free of diabetes. The prospective median follow-up of 84 months was performed for cardiovascular outcomes. Diabetic patients, as compared to control subjects, did not differ with respect to age (p = 0.159), distribution of gender (p = 0.375), hypertension (p = 0.872), hyperlipidemia (p = 0.203), smoking (p = 0.115), coronary heart disease (p = 0.182), lower extremities arterial disease (LEAD, p = 0.731), and miRs expressions except from lower miR-16-5p (p < 0.001). During the follow-up period, MACCE occurred in 16 (43.2%) diabetic and 26 (40.6%) non-diabetic patients (p = 0.624). On multivariate Cox analysis, hazard ratio (HR) and 95% Confidence Intervals (95%CI) for diabetic patients associated with MACCE were miR-134-5p (1.12; 1.05−1.21, p < 0.001), miR-499-5p (0.16; 0.02−1.32, p = 0.089), hs-CRP (1.14; 1.02−1.28; p = 0.022), prior myocardial infarction (8.56, 1.91−38.3, p = 0.004), LEAD (11.9; 2.99−47.9, p = 0.005), and RAS (20.2; 2.4−167.5, p = 0.005), while in non-diabetic subjects, only miR-16-5p (1.0006; 1.0001−1.0012, p = 0.016), miR-208b-3p (2.82; 0.91−8.71, p = 0.071), and hypertension (0.27, 0.08−0.95, p = 0.042) were associated with MACCE. Our study demonstrated that different circulating miRs may be prognostic for MACCE in diabetic versus non-diabetic patients with symptomatic ICAS. Higher expression levels of miR-134 were prognostic for MACCE in diabetic patients, while higher expression levels of miR-16 were prognostic in non-diabetic patients.
Collapse
|
12
|
Zhang ZM, Liu ZH, Nie Q, Zhang XM, Yang LQ, Wang C, Yang LL, Song GY. Metformin improves high‑fat diet‑induced insulin resistance in mice by downregulating the expression of long noncoding RNA NONMMUT031874.2. Exp Ther Med 2022; 23:332. [PMID: 35401798 PMCID: PMC8987942 DOI: 10.3892/etm.2022.11261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/30/2021] [Indexed: 12/01/2022] Open
Abstract
Metformin (MET) is the first-line therapeutic option for patients with type 2 diabetes that has garnered substantial attention over recent years. However, an insufficient number of studies have been performed to assess its effects on insulin resistance and the expression profile of long noncoding RNAs (lncRNAs). The present study divided mice into three groups: Control group, high-fat diet (HFD) group and HFD + MET group. A high-throughput sequencing analysis was conducted to detect lncRNA and mRNA expression levels, and differentially expressed lncRNAs were selected. Subsequently, the differentially expressed lncRNAs were validated both in vivo and in vitro (mouse liver AML12 cells treated with Palmitic acid) models of insulin resistance. After validating randomly selected lncRNAs via reverse transcription-quantitative PCR a novel lncRNA, NONMMUT031874.2, was identified, which was upregulated in the HFD group and reversed with MET treatment. To investigate the downstream mechanism of NONMMUT031874.2, lncRNA-microRNA (miR/miRNA)-mRNA co-expression network was constructed and NONCODE, miRBase and TargetScan databases were used, which indicated that NONMMUT031874.2 may regulate suppressor of cytokine signaling 3 by miR-7054-5p. For the in vitro part of the present study, AML12 cells were transfected with small interfering RNA to knock down NONMMUT031874.2 expression before being treated with palmitic acid (PA) and MET. The results showed that the expression of NONMMUT031874.2 was significantly increased whereas miR-7054-5p expression was significantly decreased by PA treatment. By contrast, after knocking down NONMMUT031874.2 expression or treatment with MET, the aforementioned in vitro observations were reversed. In addition, it was also found that NONMMUT031874.2 knockdown and treatment with MET exerted similar effects in alleviating insulin resistance and whilst decreasing glucose concentration in AML12 cells. These results suggest that MET treatment can ameliorate insulin resistance by downregulating NONMMUT031874.2 expression.
Collapse
Affiliation(s)
- Zhi-Mei Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Zhi-Hong Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Qian Nie
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Xue-Mei Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Li-Qun Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Lin-Lin Yang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Guang-Yao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
13
|
Luís C, Baylina P, Soares R, Fernandes R. Metabolic Dysfunction Biomarkers as Predictors of Early Diabetes. Biomolecules 2021; 11:1589. [PMID: 34827587 PMCID: PMC8615896 DOI: 10.3390/biom11111589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
During the pathophysiological course of type 2 diabetes (T2D), several metabolic imbalances occur. There is increasing evidence that metabolic dysfunction far precedes clinical manifestations. Thus, knowing and understanding metabolic imbalances is crucial to unraveling new strategies and molecules (biomarkers) for the early-stage prediction of the disease's non-clinical phase. Lifestyle interventions must be made with considerable involvement of clinicians, and it should be considered that not all patients will respond in the same manner. Individuals with a high risk of diabetic progression will present compensatory metabolic mechanisms, translated into metabolic biomarkers that will therefore show potential predictive value to differentiate between progressors/non-progressors in T2D. Specific novel biomarkers are being proposed to entrap prediabetes and target progressors to achieve better outcomes. This study provides a review of the latest relevant biomarkers in prediabetes. A search for articles published between 2011 and 2021 was conducted; duplicates were removed, and inclusion criteria were applied. From the 29 studies considered, a survey of the most cited (relevant) biomarkers was conducted and further discussed in the two main identified fields: metabolomics, and miRNA studies.
Collapse
Affiliation(s)
- Carla Luís
- FMUP–Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal;
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto Polytechnic, 4200-375 Porto, Portugal;
| | - Pilar Baylina
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto Polytechnic, 4200-375 Porto, Portugal;
- IPP–Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Raquel Soares
- FMUP–Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal;
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Biochemistry Unit, Department of Biochemistry, FMUP, Faculty of Medicine, University of Porto, Al Prof Hernani Monteiro, 4200-319 Porto, Portugal
| | - Rúben Fernandes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto Polytechnic, 4200-375 Porto, Portugal;
- IPP–Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| |
Collapse
|
14
|
Long non-coding RNA CRNDE as potential biomarkers facilitate inflammation and apoptosis in alcoholic liver disease. Aging (Albany NY) 2021; 13:23233-23244. [PMID: 34633988 PMCID: PMC8544322 DOI: 10.18632/aging.203614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Due to persistent inconsistencies in the expression data of alcoholic liver disease (ALD), it is necessary to turn to “pre-laboratory” comprehensive analysis in order to accelerate effective precision medicine and transformation research. We screened pseudogene-derived lncRNA associated with ALD by comparative analysis of 2 independent data sets from GEO. Three lncRNAs (CRNDE, RBMS3-AS3, and LINC01088) were demonstrated to be potentially useful diagnostic markers in ALD. Among them, the expression of CRNDE is up-regulated. Therefore, we focus on CRNDE. Kyoto Encyclopedia of Genes and Genomes pathways analysis revealed higher CRNDE can activate MAPK signaling pathway, apoptosis, wnt signaling pathway, and hematopoietic cell lineage. Next, we established ALD animal model and verified the success of the modeling. The result showed ALD tissues in mice had significantly higher CRNDE levels than normal tissues. Moreover, the increase of IL-6 in the serum of mice in the low-dose group is related to the activation of inflammatory factors after alcohol-induced liver injury. In addition, alcohol can induce apoptosis, and knockdown of CRNDE can reduce apoptosis. Our integrated expression profiling identified CRNDE independently associated with ALD. CRNDE can facilitate inflammation and apoptosis in ALD.
Collapse
|
15
|
Formichi C, Nigi L, Grieco GE, Maccora C, Fignani D, Brusco N, Licata G, Sebastiani G, Dotta F. Non-Coding RNAs: Novel Players in Insulin Resistance and Related Diseases. Int J Mol Sci 2021; 22:7716. [PMID: 34299336 PMCID: PMC8306942 DOI: 10.3390/ijms22147716] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
The rising prevalence of metabolic diseases related to insulin resistance (IR) have stressed the urgent need of accurate and applicable tools for early diagnosis and treatment. In the last decade, non-coding RNAs (ncRNAs) have gained growing interest because of their potential role in IR modulation. NcRNAs are variable-length transcripts which are not translated into proteins but are involved in gene expression regulation. Thanks to their stability and easy detection in biological fluids, ncRNAs have been investigated as promising diagnostic and therapeutic markers in metabolic diseases, such as type 2 diabetes mellitus (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). Here we review the emerging role of ncRNAs in the development of IR and related diseases such as obesity, T2D and NAFLD, and summarize current evidence concerning their potential clinical application.
Collapse
Affiliation(s)
- Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Carla Maccora
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), 53100 Siena, Italy
| |
Collapse
|
16
|
Tello-Flores VA, Beltrán-Anaya FO, Ramírez-Vargas MA, Esteban-Casales BE, Navarro-Tito N, Alarcón-Romero LDC, Luciano-Villa CA, Ramírez M, del Moral-Hernández Ó, Flores-Alfaro E. Role of Long Non-Coding RNAs and the Molecular Mechanisms Involved in Insulin Resistance. Int J Mol Sci 2021; 22:7256. [PMID: 34298896 PMCID: PMC8306787 DOI: 10.3390/ijms22147256] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are single-stranded RNA biomolecules with a length of >200 nt, and they are currently considered to be master regulators of many pathological processes. Recent publications have shown that lncRNAs play important roles in the pathogenesis and progression of insulin resistance (IR) and glucose homeostasis by regulating inflammatory and lipogenic processes. lncRNAs regulate gene expression by binding to other non-coding RNAs, mRNAs, proteins, and DNA. In recent years, several mechanisms have been reported to explain the key roles of lncRNAs in the development of IR, including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), imprinted maternal-ly expressed transcript (H19), maternally expressed gene 3 (MEG3), myocardial infarction-associated transcript (MIAT), and steroid receptor RNA activator (SRA), HOX transcript antisense RNA (HOTAIR), and downregulated Expression-Related Hexose/Glucose Transport Enhancer (DREH). LncRNAs participate in the regulation of lipid and carbohydrate metabolism, the inflammatory process, and oxidative stress through different pathways, such as cyclic adenosine monophosphate/protein kinase A (cAMP/PKA), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), polypyrimidine tract-binding protein 1/element-binding transcription factor 1c (PTBP1/SREBP-1c), AKT/nitric oxide synthase (eNOS), AKT/forkhead box O1 (FoxO1), and tumor necrosis factor-alpha (TNF-α)/c-Jun-N-terminal kinases (JNK). On the other hand, the mechanisms linked to the molecular, cellular, and biochemical actions of lncRNAs vary according to the tissue, biological species, and the severity of IR. Therefore, it is essential to elucidate the role of lncRNAs in the insulin signaling pathway and glucose and lipid metabolism. This review analyzes the function and molecular mechanisms of lncRNAs involved in the development of IR.
Collapse
Affiliation(s)
- Vianet Argelia Tello-Flores
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Marco Antonio Ramírez-Vargas
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Brenda Ely Esteban-Casales
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Luz del Carmen Alarcón-Romero
- Laboratorio de Citopatología e Histoquímica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Carlos Aldair Luciano-Villa
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Mónica Ramírez
- CONACyT, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Óscar del Moral-Hernández
- Laboratorio de Virología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico
| | - Eugenia Flores-Alfaro
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| |
Collapse
|
17
|
Hernández-Aguilar AI, Luciano-Villa CA, Tello-Flores VA, Beltrán-Anaya FO, Zubillaga-Guerrero MI, Flores-Alfaro E. Dysregulation of lncRNA-H19 in cardiometabolic diseases and the molecular mechanism involved : a systematic review. Expert Rev Mol Diagn 2021; 21:809-821. [PMID: 34133256 DOI: 10.1080/14737159.2021.1944808] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Cardiometabolic diseases are a global public health problem, with significant increases in their prevalence. Different epigenetic factors involved in the progression of metabolic alterations have been described, such as long non-coding RNAs (lncRNAs). H19 is a multifunctional lncRNA expressed from the maternal allele, with low expression after birth, except in the skeletal muscle and heart. Recent studies have linked its dysregulation to alterations in cell metabolism.Areas covered: H19 plays a role in the pathogenesis of coronary artery disease, nonalcoholic fatty liver disease, hepatic and renal fibrosis, insulin resistance, type 2 diabetes, and inflammation. H19 acts mainly as a competitive endogenous RNA of molecules involved in pathways that regulate cell metabolism. In this review, we analyzed the dysregulation of H19 in cardiometabolic diseases and its relationship with molecular alterations in different signaling pathways.Expert opinion: The association of H19 with the development of cardiometabolic diseases, indicates that H19 could be a therapeutic target and prognostic biomarker for these diseases. Controversies have been reported regarding the expression of H19 in some metabolic diseases, therefore, it is necessary to continue research to clarify its pathogenic effect in different organs.
Collapse
Affiliation(s)
- Ana Iris Hernández-Aguilar
- Faculty of Chemical‑Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | | | | | - Fredy Omar Beltrán-Anaya
- Faculty of Chemical‑Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | | | - Eugenia Flores-Alfaro
- Faculty of Chemical‑Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
18
|
Wu J, Nagy LE, Wang L. The long and the small collide: LncRNAs and small heterodimer partner (SHP) in liver disease. Mol Cell Endocrinol 2021; 528:111262. [PMID: 33781837 PMCID: PMC8087644 DOI: 10.1016/j.mce.2021.111262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a large and diverse class of RNA molecules that are transcribed but not translated into proteins, with a length of more than 200 nucleotides. LncRNAs are involved in gene expression and regulation. The abnormal expression of lncRNAs is associated with disease pathogenesis. Small heterodimer partner (SHP, NR0B2) is a unique orphan nuclear receptor that plays a pivotal role in many biological processes by acting as a transcriptional repressor. In this review, we present the critical roles of SHP and summarize recent findings demonstrating the regulation between lncRNAs and SHP in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Li Wang
- Independent Researcher, Tucson, AZ, USA
| |
Collapse
|
19
|
Long Non-Coding RNAs (lncRNAs) in Cardiovascular Disease Complication of Type 2 Diabetes. Diagnostics (Basel) 2021; 11:diagnostics11010145. [PMID: 33478141 PMCID: PMC7835902 DOI: 10.3390/diagnostics11010145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has opened a new paradigm to use ncRNAs as biomarkers to detect disease progression. Long non-coding RNAs (lncRNA) have garnered the most attention due to their specific cell-origin and their existence in biological fluids. Type 2 diabetes patients will develop cardiovascular disease (CVD) complications, and CVD remains the top risk factor for mortality. Understanding the lncRNA roles in T2D and CVD conditions will allow the future use of lncRNAs to detect CVD complications before the symptoms appear. This review aimed to discuss the roles of lncRNAs in T2D and CVD conditions and their diagnostic potential as molecular biomarkers for CVD complications in T2D.
Collapse
|
20
|
Chi T, Lin J, Wang M, Zhao Y, Liao Z, Wei P. Non-Coding RNA as Biomarkers for Type 2 Diabetes Development and Clinical Management. Front Endocrinol (Lausanne) 2021; 12:630032. [PMID: 34603195 PMCID: PMC8484715 DOI: 10.3389/fendo.2021.630032] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetes, a metabolic disease characterized by high blood glucose and other complications, has undefined causes and multiple risk factors, including inappropriate diet, unhealthy lifestyles, and genetic predisposition. The two most distinguished types of diabetes are type 1 and type 2 diabetes, resulting from the autoimmune impairment of insulin-generating pancreatic β cells and insulin insensitivity, respectively. Non-coding RNAs (ncRNAs), a cohort of RNAs with little transcriptional value, have been found to exert substantial importance in epigenetic and posttranscriptional modulation of gene expression such as messenger RNA (mRNA) silencing. This review mainly focuses on the pathology of type 2 diabetes (T2D) and ncRNAs as potential biomarkers in T2D development and clinical management. We consolidate the pathogenesis, diagnosis, and current treatments of T2D, and present the existing evidence on changes in multiple types of ncRNAs in response to various pathological changes and dysfunctions in different stages of T2D.
Collapse
Affiliation(s)
- Tiange Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaran Lin
- Department of Nephrology and Endocrinology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Yihan Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Peng Wei, ; Zehuan Liao,
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Peng Wei, ; Zehuan Liao,
| |
Collapse
|
21
|
Maude H, Sanchez-Cabanillas C, Cebola I. Epigenetics of Hepatic Insulin Resistance. Front Endocrinol (Lausanne) 2021; 12:681356. [PMID: 34046015 PMCID: PMC8147868 DOI: 10.3389/fendo.2021.681356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 01/14/2023] Open
Abstract
Insulin resistance (IR) is largely recognized as a unifying feature that underlies metabolic dysfunction. Both lifestyle and genetic factors contribute to IR. Work from recent years has demonstrated that the epigenome may constitute an interface where different signals may converge to promote IR gene expression programs. Here, we review the current knowledge of the role of epigenetics in hepatic IR, focusing on the roles of DNA methylation and histone post-translational modifications. We discuss the broad epigenetic changes observed in the insulin resistant liver and its associated pathophysiological states and leverage on the wealth of 'omics' studies performed to discuss efforts in pinpointing specific loci that are disrupted by these changes. We envision that future studies, with increased genomic resolution and larger cohorts, will further the identification of biomarkers of early onset hepatic IR and assist the development of targeted interventions. Furthermore, there is growing evidence to suggest that persistent epigenetic marks may be acquired over prolonged exposure to disease or deleterious exposures, highlighting the need for preventative medicine and long-term lifestyle adjustments to avoid irreversible or long-term alterations in gene expression.
Collapse
Affiliation(s)
| | | | - Inês Cebola
- *Correspondence: Hannah Maude, ; Inês Cebola,
| |
Collapse
|
22
|
Lv W, Ren Y, Hou K, Hu W, Yi Y, Xiong M, Wu M, Wu Y, Zhang Q. Epigenetic modification mechanisms involved in keloid: current status and prospect. Clin Epigenetics 2020; 12:183. [PMID: 33243301 PMCID: PMC7690154 DOI: 10.1186/s13148-020-00981-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Keloid, a common dermal fibroproliferative disorder, is benign skin tumors characterized by the aggressive fibroblasts proliferation and excessive accumulation of extracellular matrix. However, common therapeutic approaches of keloid have limited effectiveness, emphasizing the momentousness of developing innovative mechanisms and therapeutic strategies. Epigenetics, representing the potential link of complex interactions between genetics and external risk factors, is currently under intense scrutiny. Accumulating evidence has demonstrated that multiple diverse and reversible epigenetic modifications, represented by DNA methylation, histone modification, and non-coding RNAs (ncRNAs), play a critical role in gene regulation and downstream fibroblastic function in keloid. Importantly, abnormal epigenetic modification manipulates multiple behaviors of keloid-derived fibroblasts, which served as the main cellular components in keloid skin tissue, including proliferation, migration, apoptosis, and differentiation. Here, we have reviewed and summarized the present available clinical and experimental studies to deeply investigate the expression profiles and clarify the mechanisms of epigenetic modification in the progression of keloid, mainly including DNA methylation, histone modification, and ncRNAs (miRNA, lncRNA, and circRNA). Besides, we also provide the challenges and future perspectives associated with epigenetics modification in keloid. Deciphering the complicated epigenetic modification in keloid is hopeful to bring novel insights into the pathogenesis etiology and diagnostic/therapeutic targets in keloid, laying a foundation for optimal keloid ending.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yuping Ren
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Kai Hou
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Weijie Hu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yi Yi
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Mingchen Xiong
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Min Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Yiping Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| |
Collapse
|