1
|
Ruan J, Wang L, Wang N, Huang P, Chang D, Zhou X, Seto S, Li D, Hou J. Hydroxysafflor Yellow A promotes angiogenesis of brain microvascular endothelial cells from ischemia/reperfusion injury via glycolysis pathway in vitro. J Stroke Cerebrovasc Dis 2025; 34:108107. [PMID: 39515547 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Angiogenesis of brain microvascular endothelial cells (BMECs) after cerebral ischemia was conducive to improving the blood supply of ischemia tissues, which was upregulated by glycolysis. Hydroxysafflor Yellow A (HSYA) mends damaged tissues through increasing angiogenesis. METHODS HSYA treated proliferation, migration and angiogenesis of BMECs in vitro in vitro during OGD/R. HSYA regulated the key enzymes of glycolysis, such as hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), glucose uptake and products (pyruvate, ATP and lactate) were detected by western blot and kits, respectively. Scratch wound assay, transwell, tube formation and spheroid sprouting were used to explore the pathway that HSYA recovered migration and angiogenesis of BMECs. We evaluated the potential target of HSYA promoting glycolysis via molecular docking, drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA). RESULTS HSYA promoted the proliferation, migration, tube formation and spheroid sprouting of BMECs during OGD/R, and stimulated the expression of tip phenotype marker protein (CD34), and the receptor (Notch-1) that regulated the differentiation of endothelial cells into tip/stalk phenotype. In glycolysis, PFKFB3 expression was upregulated by HSYA; HSYA also improved ATP and pyruvate levels, as well as lactate release after OGD/R. Finally, upregulating VEGFA and p-VEGFR2 of HSYA was weakened because of suppressing glycolysis; the HSYA's improvement of BMECs migration and angiogenesis was attenuated under the inhibition of glycolysis, which confirmed that HSYA were upregulating angiogenesis and expression of VEGFA/VEGFR2 by glycolysis pathway. The result about molecular docking, DARTS and CETSA suggested that PFKFB3 was the possible target of HSYA. CONCLUSION HSYA promotes angiogenesis of BMECs in vitro through the glycolysis mediated VEGFA/VEGFR2 pathway, and PFKFB3 is the potential target of HSYA to heighten glycolysis.
Collapse
Affiliation(s)
- Juxuan Ruan
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Lei Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| | - Ping Huang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| | - Saiwang Seto
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Dan Li
- Shineway Pharmaceutical Group Co. Ltd. Shijiahzuang 51430, China
| | - Jincai Hou
- Shineway Pharmaceutical Group Co. Ltd. Shijiahzuang 51430, China
| |
Collapse
|
2
|
Chib S, Jamwal VL, Kumar V, Gandhi SG, Saran S. Fungal production of kojic acid and its industrial applications. Appl Microbiol Biotechnol 2023; 107:2111-2130. [PMID: 36912905 DOI: 10.1007/s00253-023-12451-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Kojic acid has gained its importance after it was known worldwide that the substance functions primarily as skin-lightening agent. Kojic acid plays a vital role in skin care products, as it enhances the ability to prevent exposure to UV radiation. It inhibits the tyrosinase formation which suppresses hyperpigmentation in human skin. Besides cosmetics, kojic acid is also greatly used in food, agriculture, and pharmaceuticals industries. Conversely, according to Global Industry Analysts, the Middle East, Asia, and in Africa especially, the demand of whitening cream is very high, and probably the market will reach to $31.2 billion by 2024 from $17.9 billion of 2017. The important kojic acid-producing strains were mainly belongs to the genus Aspergillus and Penicillium. Due to its commercial potential, it continues to attract the attention for its green synthesis, and the studies are still widely conducted to improve kojic acid production. Thus, the present review is focused on the current production processes, gene regulation, and limitation of its commercial production, probable reasons, and possible solutions. For the first time, detailed information on the metabolic pathway and the genes involved in kojic acid production, along with illustrations of genes, are highlighted in the present review. Demand and market applications of kojic acid and its regulatory approvals for its safer use are also discussed. KEY POINTS: • Kojic acid is an organic acid that is primarily produced by Aspergillus species. • It is mainly used in the field of health care and cosmetic industries. • Kojic acid and its derivatives seem to be safe molecules for human use.
Collapse
Affiliation(s)
- Shifali Chib
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijay Lakshmi Jamwal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Infectious Disease Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Vinod Kumar
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit G Gandhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Infectious Disease Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Chumakova SP, Urazova OI, Shipulin VM, Denisenko OA, Kononova TE, Nevskaya KV, Andreev SL. Differentiation and subpopulation composition of VEGFR2+ cells in the blood and bone marrow in ischemic cardiomyopathy. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-120-131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aim. To identify disturbances of differentiation and subpopulation composition of VEGFR2+ cells in the blood and bone marrow associated with the features of the cytokine profile in the blood and bone marrow in patients with coronary artery disease (CAD) with and without ischemic cardiomyopathy (ICM).Materials and methods. The study included 74 patients with СAD with and without ICM (30 and 44 people, respectively) and 18 healthy donors. In all patients with СAD, peripheral blood sampling was performed immediately before coronary artery bypass grafting, and bone marrow samples were taken during the surgery via a sternal incision. In the healthy donors, only peripheral blood sampling was performed. In the bone marrow and blood samples, the number of VEGFR2+ cells (CD14+VEGFR2+ cells) and their immunophenotypes CD14++CD16-VEGFR2+, CD14++CD16+VEGFR2+, CD14+CD16++VEGFR2+, and CD14+CD16-VEGFR2+ was determined by flow cytometry. Using enzyme-linked immunosorbent assay, the levels of VЕGF-А, TNFα, M-CSF, and IL-13, as well as the content of MCP-1 (only in the blood) and the M-CSF / IL-13 ratio (only in the bone marrow) were determined.Results. The content of CD14+VEGFR2+ cells in the blood of CAD patients with and without ICM was higher than normal values due to the greater number of CD14++CD16-VEGFR2+, CD14++CD16+VEGFR2+, and CD14+CD16++VEGFR2+. In the bone marrow of the patients with ICM, the content of CD14++CD16-VEGFR2+, CD14+CD16++VEGFR2+, and CD14+CD16-VEGFR2+ was lower than in patients with CAD without ICM, and the number of CD14++CD16+VEGFR2+ cells corresponded to that in the controls. Regardless of the presence of ICM in CAD, a high concentration of TNFα and normal levels of VEGF-A and IL-13 were observed in the blood. In CAD without ICM, an excess of MCP-1 and deficiency of M-CSF were revealed in the blood. In the bone marrow, the levels of VEGF-A, TNFα, M-CSF, and IL-13 were comparable between the groups of patients against the background of a decrease in the M-CSF / IL-13 ratio in the patients with ICM.Conclusion. Unlike CAD without cardiomyopathy, in ICM, no excess of VEGFR2+ cells and MCP-1 in the blood is observed, which hinders active migration of CD14+CD16++VEGFR2+ cells from the myeloid tissue, and a decrease in the M-CSF / IL-13 ratio in the bone marrow disrupts differentiation of other forms of VEGFR2+ cells, preventing vascular repair.
Collapse
Affiliation(s)
| | - O. I. Urazova
- Siberian State Medical University; Tomsk State University of Control Systems and Radioelectronics (TUSUR)
| | - V. M. Shipulin
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - O. A. Denisenko
- Siberian State Medical University; Tomsk Regional Blood Center
| | | | | | - S. L. Andreev
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
4
|
Cold-Inducible RNA-Binding Protein but Not Its Antisense lncRNA Is a Direct Negative Regulator of Angiogenesis In Vitro and In Vivo via Regulation of the 14q32 angiomiRs-microRNA-329-3p and microRNA-495-3p. Int J Mol Sci 2021; 22:ijms222312678. [PMID: 34884485 PMCID: PMC8657689 DOI: 10.3390/ijms222312678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the 14q32 microRNAs, miR-329-3p and miR-495-3p, improves post-ischemic neovascularization. Cold-inducible RNA-binding protein (CIRBP) facilitates maturation of these microRNAs. We hypothesized that CIRBP deficiency improves post-ischemic angiogenesis via downregulation of 14q32 microRNA expression. We investigated these regulatory mechanisms both in vitro and in vivo. We induced hindlimb ischemia in Cirp−/− and C57Bl/6-J mice, monitored blood flow recovery with laser Doppler perfusion imaging, and assessed neovascularization via immunohistochemistry. Post-ischemic angiogenesis was enhanced in Cirp−/− mice by 34.3% with no effects on arteriogenesis. In vivo at day 7, miR-329-3p and miR-495-3p expression were downregulated in Cirp−/− mice by 40.6% and 36.2%. In HUVECs, CIRBP expression was upregulated under hypothermia, while miR-329-3p and miR-495-3p expression remained unaffected. siRNA-mediated CIRBP knockdown led to the downregulation of CIRBP-splice-variant-1 (CIRBP-SV1), CIRBP antisense long noncoding RNA (lncRNA-CIRBP-AS1), and miR-495-3p with no effects on the expression of CIRBP-SV2-4 or miR-329-3p. siRNA-mediated CIRBP knockdown improved HUVEC migration and tube formation. SiRNA-mediated lncRNA-CIRBP-AS1 knockdown had similar long-term effects. After short incubation times, however, only CIRBP knockdown affected angiogenesis, indicating that the effects of lncRNA-CIRBP-AS1 knockdown were secondary to CIRBP-SV1 downregulation. CIRBP is a negative regulator of angiogenesis in vitro and in vivo and acts, at least in part, through the regulation of miR-329-3p and miR-495-3p.
Collapse
|