1
|
Bian J, Chen R, Gu S, Wang W, Yang X. Quantitative proteomics analysis identified new interacting proteins of JAL30 in Arabidopsis. J Proteomics 2024; 297:105127. [PMID: 38367771 DOI: 10.1016/j.jprot.2024.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Jacalin-related lectins (JALs) are a unique group of plant lectins derived from the jacalin protein family, which play important roles in plant defense responses. JAL30/PBP1 (PYK10 binding protein 1) interacts with inactive PYK10, exerting negative regulatory control over the size of the PYK10 complex, which is formed and activated upon insect or pathogen invasion. However, the precise interplay between JAL30 and other components remains elusive. In this study, we found JAL30 as a nucleocytoplasmic protein, but no obvious phenotype was observed in jal30-1 single mutant. Through immunoprecipitation (IP) enrichment combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), dozens of new JAL30 interacting proteins were found in addition to several reported ones. Gene Ontology (GO) analysis revealed that these interacting proteins were highly related to the wounding and bacterial stimuli, suggesting their potential involvement in the jasmonate (JA) response. Importantly, the expression of JAL30 was induced by MeJA treatment, further highlighting its relevance in plant defense mechanisms. A novel JAL30 interacting protein, ESM1, was identified and its interaction with JAL30 was confirmed by Co-immunoprecipitation. Moreover, ESM1 was found as an O-GlcNAcylated protein, suggesting that JAL30 may possess glycosylated protein binding ability, particularly in O-GlcNAcylated protein and peptide recognition. Overall, our study provides valuable insights into the interacting protein network and biological function of JAL30, demonstrates the interaction between JAL30 and ESM1, and uncovers the potential significance of JAL30 in plant defense system, potentially through its association with PYK10 complex or JA response. SIGNIFICANCE: The biological functions of lectin proteins, including defense responses, immunity responses, signal transduction, have been well studied. Lectin proteins were also utilized to enrich glycosylated proteins for their specific carbohydrates binding capability. Jacalin-related lectins (JALs) were found to involve in plant defense mechanism. However, it is not yet clear whether JALs could use for enrichment of glycosylated proteins. In this study, we used label-free quantification method to identify interacting proteins of JAL30. A novel interacting protein, ESM1, as an O-GlcNAcylated protein was found. ESM1 has been reported to take part in defense against insect herbivory. Therefore, our findings provided experimental evidence to confirm that JALs have potential to be developed as the bio-tools to enrich glycosylated proteins. Finally, our data not only illustrated the vital biological role of JALs in plants, but also verified unique function of JAL30 in recognizing O-GlcNAcylated proteins.
Collapse
Affiliation(s)
- Jianghu Bian
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongqing Chen
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiting Gu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenfei Wang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xuelian Yang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
2
|
Zhao X, Wang J, Xia N, Qu Y, Zhan Y, Teng W, Li H, Li W, Li Y, Zhao X, Han Y. Genome-wide identification and analysis of glyceraldehyde-3-phosphate dehydrogenase family reveals the role of GmGAPDH14 to improve salt tolerance in soybean ( Glycine max L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1193044. [PMID: 37346126 PMCID: PMC10281054 DOI: 10.3389/fpls.2023.1193044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023]
Abstract
Introduction Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential key enzyme in the glycolytic pathway and plays an important role in stress responses. Although GAPDH family genes have been found in different plant species, the determination of their gene family analysis and their functional roles in soybean are still unknown. Methods In this study, gene sequence and expression data were obtained using online tools, and systematic evolution, expression profile analysis, and qRT-PCR analysis were conducted. Results and Discussion Here a total of 16 GmGAPDH genes were identified on nine chromosomes, which were classified into three clusters. Additionally, all GmGAPDH genes harbor two highly conserved domains, including Gp_dh_N (PF00044) and Gp_dh_C (PF02800). The qRTPCR analysis also showed that most GmGAPDH genes significantly responded to multiple abiotic stresses, including NaHCO3, polyethylene glycol, cold, and salt. Among them, GmGAPDH14 was extraordinarily induced by salt stress. The GmGAPDH14 gene was cloned and overexpressed through soybean hair roots. The overexpressed transgenic soybean plants of the GmGAPDH14 gene have also shown better growth than that of control plants. Moreover, the overexpressed transgenic plants of GmGAPDH14 gene had higher activities of superoxide dismutase but lower malonaldehyde (MDA) content than those of control plants under salt stress. Meanwhile, a total of four haplotypes were found for the GmGAPDH14 gene, and haplotypes 2, 3, and 4 were beneficial for the tolerance of soybean to salt stress. These results suggest that the GmGAPDH14 gene might be involved in the process of soybean tolerance to salt stress. The results of this study will be valuable in understanding the role of GAPDH genes in the abiotic stress response of soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yongguang Li
- *Correspondence: Yongguang Li, ; Xue Zhao, ; Yingpeng Han,
| | - Xue Zhao
- *Correspondence: Yongguang Li, ; Xue Zhao, ; Yingpeng Han,
| | - Yingpeng Han
- *Correspondence: Yongguang Li, ; Xue Zhao, ; Yingpeng Han,
| |
Collapse
|
3
|
Ding Y, Fan B, Zhu C, Chen Z. Shared and Related Molecular Targets and Actions of Salicylic Acid in Plants and Humans. Cells 2023; 12:219. [PMID: 36672154 PMCID: PMC9856608 DOI: 10.3390/cells12020219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Salicylic acid (SA) is a phenolic compound produced by all plants that has an important role in diverse processes of plant growth and stress responses. SA is also the principal metabolite of aspirin and is responsible for many of the anti-inflammatory, cardioprotective and antitumor activities of aspirin. As a result, the number of identified SA targets in both plants and humans is large and continues to increase. These SA targets include catalases/peroxidases, metabolic enzymes, protein kinases and phosphatases, nucleosomal and ribosomal proteins and regulatory and signaling proteins, which mediate the diverse actions of SA in plants and humans. While some of these SA targets and actions are unique to plants or humans, many others are conserved or share striking similarities in the two types of organisms, which underlie a host of common biological processes that are regulated or impacted by SA. In this review, we compare shared and related SA targets and activities to highlight the common nature of actions by SA as a hormone in plants versus a therapeutic agent in humans. The cross examination of SA targets and activities can help identify new actions of SA and better explain their underlying mechanisms in plants and humans.
Collapse
Affiliation(s)
- Yuanyuan Ding
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
4
|
Wong A, Gehring C. New Horizons in Plant Cell Signaling. Int J Mol Sci 2022; 23:5826. [PMID: 35628641 PMCID: PMC9147848 DOI: 10.3390/ijms23105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
Responding to environmental stimuli with appropriate molecular mechanisms is essential to all life forms and particularly so in sessile organisms such as plants [...].
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, China
| | - Christoph Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy
| |
Collapse
|
5
|
Pokotylo I, Hodges M, Kravets V, Ruelland E. A ménage à trois: salicylic acid, growth inhibition, and immunity. TRENDS IN PLANT SCIENCE 2022; 27:460-471. [PMID: 34872837 DOI: 10.1016/j.tplants.2021.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Salicylic acid (SA) is a plant hormone almost exclusively associated with the promotion of immunity. It is also known that SA has a negative impact on plant growth, yet only limited efforts have been dedicated to explain this facet of SA action. In this review, we focus on SA-related reduced growth and discuss whether it is a regulated process and if the role of SA in immunity imperatively comes with growth suppression. We highlight molecular targets of SA that interfere with growth and describe scenarios where SA can improve plant immunity without a growth penalty.
Collapse
Affiliation(s)
- Igor Pokotylo
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NASU, 02094 Kyiv, Ukraine.
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR CNRS 9213, Université Paris-Saclay, INRAE, Université d'Evry, Université de Paris, 91190 Gif-sur-Yvette, France
| | - Volodymyr Kravets
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NASU, 02094 Kyiv, Ukraine
| | - Eric Ruelland
- Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue du Docteur Schweitzer, 60203 Compiègne, France.
| |
Collapse
|
6
|
Pokotylo I, Hellal D, Bouceba T, Hernandez-Martinez M, Kravets V, Leitao L, Espinasse C, Kleiner I, Ruelland E. Correction: Pokotylo, I., et al. Deciphering the Binding of Salicylic Acid to Arabidopsis thaliana Chloroplastic GAPDH-A1. Int. J. Mol. Sci. 2020, 21, 4678. Int J Mol Sci 2020; 21:ijms21207435. [PMID: 33050142 PMCID: PMC7587956 DOI: 10.3390/ijms21207435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Igor Pokotylo
- IEES-Paris (UMR_7618)—Institut D’écologie et des Sciences de L’environnement de Paris, CNRS UMR 7583, Université Paris-Est Créteil, Sorbonne Université, F-94010 Paris, France; (I.P.); (D.H.); (M.H.-M.); (L.L.); (C.E.)
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska 1, 02094 Kyiv, Ukraine;
| | - Denis Hellal
- IEES-Paris (UMR_7618)—Institut D’écologie et des Sciences de L’environnement de Paris, CNRS UMR 7583, Université Paris-Est Créteil, Sorbonne Université, F-94010 Paris, France; (I.P.); (D.H.); (M.H.-M.); (L.L.); (C.E.)
| | - Tahar Bouceba
- Plateforme D’interactions Moléculaires, CNRS-FR3631, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, Cedex 05, F-75252 Paris, France;
| | - Miguel Hernandez-Martinez
- IEES-Paris (UMR_7618)—Institut D’écologie et des Sciences de L’environnement de Paris, CNRS UMR 7583, Université Paris-Est Créteil, Sorbonne Université, F-94010 Paris, France; (I.P.); (D.H.); (M.H.-M.); (L.L.); (C.E.)
| | - Volodymyr Kravets
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska 1, 02094 Kyiv, Ukraine;
| | - Luis Leitao
- IEES-Paris (UMR_7618)—Institut D’écologie et des Sciences de L’environnement de Paris, CNRS UMR 7583, Université Paris-Est Créteil, Sorbonne Université, F-94010 Paris, France; (I.P.); (D.H.); (M.H.-M.); (L.L.); (C.E.)
| | - Christophe Espinasse
- IEES-Paris (UMR_7618)—Institut D’écologie et des Sciences de L’environnement de Paris, CNRS UMR 7583, Université Paris-Est Créteil, Sorbonne Université, F-94010 Paris, France; (I.P.); (D.H.); (M.H.-M.); (L.L.); (C.E.)
| | - Isabelle Kleiner
- LISA (UMR 7583)—Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris-Est Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), 61 Avenue du Générale de Gaulle, F-94010 Créteil, France;
| | - Eric Ruelland
- IEES-Paris (UMR_7618)—Institut D’écologie et des Sciences de L’environnement de Paris, CNRS UMR 7583, Université Paris-Est Créteil, Sorbonne Université, F-94010 Paris, France; (I.P.); (D.H.); (M.H.-M.); (L.L.); (C.E.)
- Correspondence: or
| |
Collapse
|