1
|
Imre A, Balogh B, Mándity I. GraphCPP: The new state-of-the-art method for cell-penetrating peptide prediction via graph neural networks. Br J Pharmacol 2025; 182:495-509. [PMID: 39568115 DOI: 10.1111/bph.17388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Cell-penetrating peptides (CPPs) are short amino acid sequences that can penetrate cell membranes and deliver molecules into cells. Several models have been developed for their discovery, yet these models often face challenges in accurately predicting membrane penetration due to the complex nature of peptide-cell interactions. Hence, there is a need for innovative approaches that can enhance predictive performance. EXPERIMENTAL APPROACH In this study, we present the application GraphCPP, a novel graph neural network (GNN) for the prediction of membrane penetration capability of peptides. KEY RESULTS A new comprehensive dataset-dubbed CPP1708-was constructed resulting in the largest reliable database of CPPs to date. Comparative analyses with previous methods, such as MLCPP2, C2Pred, CellPPD and CellPPD-Mod, demonstrated the superior predictive performance of our model. Upon testing against other published methods, GraphCPP performs exceptionally, achieving 0.5787 Matthews correlation coefficient and 0.8459 area under the curve (AUC) values on one dataset. This means a 92.8% and 23.3% improvement in Matthews correlation coefficient and AUC measures respectively compared with the next best model. The capability of the model to effectively learn peptide representations was demonstrated through t-distributed stochastic neighbour embedding plots. Additionally, the uncertainty analysis revealed that GraphCPP maintains high confidence in predictions for peptides shorter than 40 amino acids. The source code is available at https://github.com/attilaimre99/GraphCPP. CONCLUSION AND IMPLICATIONS These findings indicate the potential of GNN-based models to improve CPP penetration prediction and it may contribute towards the development of more efficient drug delivery systems.
Collapse
Affiliation(s)
- Attila Imre
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Center for Health Technology Assessment, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Balázs Balogh
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - István Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- Artificial Transporters Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
2
|
Nadal-Bufi F, Nithun RV, de Moliner F, Lin X, Habiballah S, Jbara M, Vendrell M. Late-Stage Minimal Labeling of Peptides and Proteins for Real-Time Imaging of Cellular Trafficking. ACS CENTRAL SCIENCE 2025; 11:66-75. [PMID: 39866693 PMCID: PMC11758221 DOI: 10.1021/acscentsci.4c01249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025]
Abstract
The cellular uptake routes of peptides and proteins are complex and diverse, often handicapping therapeutic success. Understanding their mechanisms of internalization requires chemical derivatization with approaches that are compatible with wash-free and real-time imaging. In this work, we developed a new late-stage labeling strategy for unprotected peptides and proteins, which retains their biological activity while enabling live-cell imaging of uptake and intracellular trafficking. Benzo-2,1,3-thiadiazoles were selectively incorporated into Cys residues of both linear and cyclic peptides via Pd-mediated arylation with good yields and high purities. The resulting labeled peptides are chemically stable under physiological conditions and display strong fluorogenic character for wash-free imaging studies. We utilized this approach to prepare native-like analogues of cell-penetrating peptides and performed time-course analysis of their internalization routes in live cells by fluorescence lifetime imaging. Furthermore, we applied our strategy to label the chemokine protein mCCL2 and monitor its internalization via receptor-mediated endocytosis in live macrophages. This study provides a straightforward strategy for late-stage fluorogenic labeling of intact peptides and small proteins and direct visualization of dynamic intracellular events.
Collapse
Affiliation(s)
- Ferran Nadal-Bufi
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Raj V. Nithun
- School
of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Fabio de Moliner
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Xiaoxi Lin
- School
of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | - Muhammad Jbara
- School
of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| |
Collapse
|
3
|
Batistatou N, Kritzer JA. Recent advances in methods for quantifying the cell penetration of macromolecules. Curr Opin Chem Biol 2024; 81:102501. [PMID: 39024686 PMCID: PMC11323051 DOI: 10.1016/j.cbpa.2024.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
As the landscape of macromolecule therapeutics advances, drug developers are continuing to aim at intracellular targets. To activate, inhibit, or degrade these targets, the macromolecule must be delivered efficiently to intracellular compartments. Quite often, there is a discrepancy between binding affinity in biochemical assays and activity in cell-based assays. Identifying the bottleneck for cell-based activity requires robust assays that quantify total cellular uptake and/or cytosolic delivery. Recognizing this need, chemical biologists have designed a plethora of assays to make this measurement, each with distinct advantages and disadvantages. In this review, we describe the latest and most promising developments in the last 3 to 4 years.
Collapse
Affiliation(s)
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford MA 02155, USA.
| |
Collapse
|
4
|
Liu J, Heddleston J, Perkins DR, Chen JJH, Ghanbarpour A, Smith BW, Miles R, Aihara E, Afshar S. Discovery of a new class of cell-penetrating peptides by novel phage display platform. Sci Rep 2024; 14:13437. [PMID: 38862601 PMCID: PMC11167021 DOI: 10.1038/s41598-024-64405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
The primary hurdles for small interference RNA (siRNA) in clinical use are targeted and cytosolic delivery. To overcome both challenges, we have established a novel platform based on phage display, called NNJA. In this approach, a lysosomal cathepsin substrate is engineered within the flexible loops of PIII, that is displaying a unique random sequence at its N-terminus. NNJA library selection targeting cell-expressed targets should yield specific peptides localized in the cytoplasm. That is because phage internalization and subsequent localization to lysosome, upon peptide binding to the cell expressed target, will result in cleavage of PIII, rendering phage non-infective. Such phage will be eliminated from the selected pool and only peptide-phage that escapes lysosomes will advance to the next round. Proof of concept studies with the NNJA library demonstrated cytosolic localization of selected peptide-phage and peptide-siRNA, confirmed through confocal microscopy. More importantly, conjugation of siHPRT to monomeric or multimeric NNJA peptides resulted in significant reduction in HPRT mRNA in various cell types without significant cytotoxicity. Sequence similarity and clustering analysis from NGS dataset provide insights into sequence composition facilitating cell penetration. NNJA platform offers a highly efficient peptide discovery engine for targeted delivery of oligonucleotides to cytosol.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - John Heddleston
- Biotechnology Research, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, 46221, USA
| | - Douglas Raymond Perkins
- Genetic Medicine, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, 46221, USA
| | - Jack Jia Hua Chen
- Biotechnology Research, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, 46221, USA
| | - Ahmadreza Ghanbarpour
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Bill William Smith
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Rebecca Miles
- Genetic Medicine, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, 46221, USA
| | - Eitaro Aihara
- Biotechnology Research, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, 46221, USA
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA.
| |
Collapse
|
5
|
Ghaemi B, Tanwar S, Singh A, Arifin DR, McMahon MT, Barman I, Bulte JWM. Cell-Penetrating and Enzyme-Responsive Peptides for Targeted Cancer Therapy: Role of Arginine Residue Length on Cell Penetration and In Vivo Systemic Toxicity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11159-11171. [PMID: 38385360 PMCID: PMC11362383 DOI: 10.1021/acsami.3c14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
For the improved delivery of cancer therapeutics and imaging agents, the conjugation of cell-penetrating peptides (CPPs) increases the cellular uptake and water solubility of agents. Among the various CPPs, arginine-rich peptides have been the most widely used. Combining CPPs with enzyme-responsive peptides presents an innovative strategy to target specific intracellular enzymes in cancer cells and when combined with the appropriate click chemistry can enhance theranostic drug delivery through the formation of intracellular self-assembled nanostructures. However, one drawback of CPPs is their high positive charge which can cause nonspecific binding, leading to off-target accumulation and potential toxicity. Hence, balancing cell-specific penetration, toxicity, and biocompatibility is essential for future clinical efficacy. We synthesized six cancer-specific, legumain-responsive RnAANCK peptides containing one to six arginine residues, with legumain being an asparaginyl endopeptidase that is overexpressed in aggressive prostate tumors. When conjugated to Alexa Fluor 488, R1-R6AANCK peptides exhibited a concentration- and time-dependent cell penetration in prostate cancer cells, which was higher for peptides with higher R values, reaching a plateau after approximately 120 min. Highly aggressive DU145 prostate tumor cells, but not less aggressive LNCaP cells, self-assembled nanoparticles in the cytosol after the cleavage of the legumain-specific peptide. The in vivo biocompatibility was assessed in mice after the intravenous injection of R1-R6AANCK peptides, with concentrations ranging from 0.0125 to 0.4 mmol/kg. The higher arginine content in R4-6 peptides showed blood and urine indicators for the impairment of bone marrow, liver, and kidney function in a dose-dependent manner, with instant hemolysis and morbidity in extreme cases. These findings underscore the importance of designing peptides with the optimal arginine residue length for a proper balance of cell-specific penetration, toxicity, and in vivo biocompatibility.
Collapse
Affiliation(s)
- Behnaz Ghaemi
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Swati Tanwar
- Department of Mechanical Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland 21218, United States
| | - Aruna Singh
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Inc., Baltimore, Maryland 21205, United States
| | - Dian R Arifin
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Inc., Baltimore, Maryland 21205, United States
| | - Ishan Barman
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Mechanical Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland 21218, United States
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Inc., Baltimore, Maryland 21205, United States
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Horsfall AJ, Chav T, Pederick JL, Kikhtyak Z, Vandborg BC, Kowalczyk W, Scanlon DB, Tilley WD, Hickey TE, Abell AD, Bruning JB. Designing Fluorescent Nuclear Permeable Peptidomimetics to Target Proliferating Cell Nuclear Antigen. J Med Chem 2023; 66:10354-10363. [PMID: 37489955 DOI: 10.1021/acs.jmedchem.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Human proliferating cell nuclear antigen (PCNA) is a critical mediator of DNA replication and repair, acting as a docking platform for replication proteins. Disrupting these interactions with a peptidomimetic agent presents as a promising avenue to limit proliferation of cancerous cells. Here, a p21-derived peptide was employed as a starting scaffold to design a modular peptidomimetic that interacts with PCNA and is cellular and nuclear permeable. Ultimately, a peptidomimetic was produced which met these criteria, consisting of a fluorescein tag and SV40 nuclear localization signal conjugated to the N-terminus of a p21 macrocycle derivative. Attachment of the fluorescein tag was found to directly affect cellular uptake of the peptidomimetic, with fluorescein being requisite for nuclear permeability. This work provides an important step forward in the development of PCNA targeting peptidomimetics for use as anti-cancer agents or as cancer diagnostics.
Collapse
Affiliation(s)
- Aimee J Horsfall
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - Theresa Chav
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - Jordan L Pederick
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Zoya Kikhtyak
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bethiney C Vandborg
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Denis B Scanlon
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
7
|
Nuclear localization signal peptides enhance genetic transformation of Dunaliella salina. Mol Biol Rep 2023; 50:1459-1467. [PMID: 36482029 DOI: 10.1007/s11033-022-08159-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dunaliella salina (D. salina) expression system shows a very attractive application prospect, but it currently has a technical bottleneck, namely the low or unstable expression of recombinant proteins. Given the characteristics of cell-penetrating peptides or/and nuclear localization signal (NLS) peptides, this study is the first attempt to improve the transformation rate of foreign gene with trans-activating transcriptional (TAT) protein or/and NLS peptides. METHODS AND RESULTS Using salt gradient method, exogenous plasmids were transferred into D. salina cells with TAT or TAT/NLS complexes simultaneously. The β-glucuronidase gene expression was identified by means of histochemical stain and RT-qPCR detection. Through observation with light microscope, TAT-mediating cells exhibit an apparent cytotoxicity even at ratios of 0.5, no significant toxicity was noted in the TAT/plasmid/NLS complex group. It is obvious that with the addition of peptides the toxicity decreases significantly. Histochemical staining showed that the transformants presented blue color under light microscope, but the negative control and blank control are not. Furthermore, based on a TAT/plasmids ratio of 4 with 10 µg NLS peptides mediation, RT-qPCR results demonstrated that the transcripts of target gene were increased by 269 times than that of control group. CONCLUSIONS This study demonstrated that combination of TAT and NLS peptides can significantly improve the transformation rate and expression level of foreign gene in D. salina system. It offers a promising way for promoting the application and development of D. salina bioreactor.
Collapse
|
8
|
Hadjicharalambous A, Bournakas N, Newman H, Skynner MJ, Beswick P. Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics (Basel) 2022; 11:1636. [PMID: 36421280 PMCID: PMC9686638 DOI: 10.3390/antibiotics11111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a "vector", attached to either a current or novel antibiotic, called a "cargo" or "payload". In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Nikolaos Bournakas
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Hector Newman
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Michael J. Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Paul Beswick
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| |
Collapse
|
9
|
Hasannejad-Asl B, Pooresmaeil F, Takamoli S, Dabiri M, Bolhassani A. Cell penetrating peptide: A potent delivery system in vaccine development. Front Pharmacol 2022; 13:1072685. [PMID: 36425579 PMCID: PMC9679422 DOI: 10.3389/fphar.2022.1072685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 07/28/2023] Open
Abstract
One of the main obstacles to most medication administrations (such as the vaccine constructs) is the cellular membrane's inadequate permeability, which reduces their efficiency. Cell-penetrating peptides (CPPs) or protein transduction domains (PTDs) are well-known as potent biological nanocarriers to overcome this natural barrier, and to deliver membrane-impermeable substances into cells. The physicochemical properties of CPPs, the attached cargo, concentration, and cell type substantially influence the internalization mechanism. Although the exact mechanism of cellular uptake and the following processing of CPPs are still uncertain; but however, they can facilitate intracellular transfer through both endocytic and non-endocytic pathways. Improved endosomal escape efficiency, selective cell targeting, and improved uptake, processing, and presentation of antigen by antigen-presenting cells (APCs) have been reported by CPPs. Different in vitro and in vivo investigations using CPP conjugates show their potential as therapeutic agents in various medical areas such as infectious and non-infectious disorders. Effective treatments for a variety of diseases may be provided by vaccines that can cooperatively stimulate T cell-mediated immunity (T helper cell activity or cytotoxic T cell function), and immunologic memory. Delivery of antigen epitopes to APCs, and generation of a potent immune response is essential for an efficacious vaccine that can be facilitated by CPPs. The current review describes the delivery of numerous vaccine components by various CPPs and their immunostimulatory properties.
Collapse
Affiliation(s)
- Behnam Hasannejad-Asl
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pooresmaeil
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Shahla Takamoli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mehran Dabiri
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Szabó I, Yousef M, Soltész D, Bató C, Mező G, Bánóczi Z. Redesigning of Cell-Penetrating Peptides to Improve Their Efficacy as a Drug Delivery System. Pharmaceutics 2022; 14:pharmaceutics14050907. [PMID: 35631493 PMCID: PMC9146218 DOI: 10.3390/pharmaceutics14050907] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022] Open
Abstract
Cell-penetrating peptides (CPP) are promising tools for the transport of a broad range of compounds into cells. Since the discovery of the first members of this peptide family, many other peptides have been identified; nowadays, dozens of these peptides are known. These peptides sometimes have very different chemical–physical properties, but they have similar drawbacks; e.g., non-specific internalization, fast elimination from the body, intracellular/vesicular entrapment. Although our knowledge regarding the mechanism and structure–activity relationship of internalization is growing, the prediction and design of the cell-penetrating properties are challenging. In this review, we focus on the different modifications of well-known CPPs to avoid their drawbacks, as well as how these modifications may increase their internalization and/or change the mechanism of penetration.
Collapse
Affiliation(s)
- Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary;
- Correspondence: (I.S.); (Z.B.)
| | - Mo’ath Yousef
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Dóra Soltész
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Csaba Bató
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary;
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
- Correspondence: (I.S.); (Z.B.)
| |
Collapse
|
11
|
Design of Membrane Active Peptides Considering Multi-Objective Optimization for Biomedical Application. MEMBRANES 2022; 12:membranes12020180. [PMID: 35207101 PMCID: PMC8880019 DOI: 10.3390/membranes12020180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023]
Abstract
A multitude of membrane active peptides exists that divides into subclasses, such as cell penetrating peptides (CPPs) capable to enter eukaryotic cells or antimicrobial peptides (AMPs) able to interact with prokaryotic cell envelops. Peptide membrane interactions arise from unique sequence motifs of the peptides that account for particular physicochemical properties. Membrane active peptides are mainly cationic, often primary or secondary amphipathic, and they interact with membranes depending on the composition of the bilayer lipids. Sequences of these peptides consist of short 5–30 amino acid sections derived from natural proteins or synthetic sources. Membrane active peptides can be designed using computational methods or can be identified in screenings of combinatorial libraries. This review focuses on strategies that were successfully applied to the design and optimization of membrane active peptides with respect to the fact that diverse features of successful peptide candidates are prerequisites for biomedical application. Not only membrane activity but also degradation stability in biological environments, propensity to induce resistances, and advantageous toxicological properties are crucial parameters that have to be considered in attempts to design useful membrane active peptides. Reliable assay systems to access the different biological characteristics of numerous membrane active peptides are essential tools for multi-objective peptide optimization.
Collapse
|
12
|
Okuda A, Futaki S. Protein Delivery to Cytosol by Cell-Penetrating Peptide Bearing Tandem Repeat Penetration-Accelerating Sequence. Methods Mol Biol 2022; 2383:265-273. [PMID: 34766296 DOI: 10.1007/978-1-0716-1752-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pas2r12 is comprised of a repeat of the penetration-accelerating sequence (Pas) (Pas2: FFLIG-FFLIG) and D-form dodeca-arginine (r12), a cell-penetrating peptide. Pas2r12 significantly enhances cytosolic delivery of cargo proteins, including enhanced green fluorescent protein and immunoglobulin G. Simply incubating Pas2r12 with cargo leads to their cytosolic tranlsocation. Cytosolic delivery of cargo by Pas2r12 involves caveolae-mediated endocytosis. In this chapter, we describe methods of cytosolic delivery of cargo using Pas2r12 and provide methods for investigating the cellular uptake pathway of cargo by Pas2r12.
Collapse
Affiliation(s)
- Akiko Okuda
- Department of Medical Technology, Graduate School of Health Sciences, Niigata University, Niigata, Niigata, Japan.
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
13
|
Sánchez-Navarro M. Advances in peptide-mediated cytosolic delivery of proteins. Adv Drug Deliv Rev 2021; 171:187-198. [PMID: 33561452 DOI: 10.1016/j.addr.2021.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
The number of protein-based drugs is exponentially increasing. However, development of protein therapeutics against intracellular targets is hampered by the lack of efficient cytosolic delivery strategies. In recent years, the use of cell-penetrating peptides has been proposed as a strategy to promote protein internalization. In this article, we provide the reader with a succinct update on the strategies exploited to enable peptide-mediated cytosolic delivery of proteins. First, we analyse the various methods available for delivery. We then describe the most popular and the in vitro assays designed to assess the intracellular distribution of protein cargo.
Collapse
|
14
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
15
|
Lee HM, Ren J, Tran KM, Jeon BM, Park WU, Kim H, Lee KE, Oh Y, Choi M, Kim DS, Na D. Identification of efficient prokaryotic cell-penetrating peptides with applications in bacterial biotechnology. Commun Biol 2021; 4:205. [PMID: 33589718 PMCID: PMC7884711 DOI: 10.1038/s42003-021-01726-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/19/2021] [Indexed: 11/12/2022] Open
Abstract
In bacterial biotechnology, instead of producing functional proteins from plasmids, it is often necessary to deliver functional proteins directly into live cells for genetic manipulation or physiological modification. We constructed a library of cell-penetrating peptides (CPPs) capable of delivering protein cargo into bacteria and developed an efficient delivery method for CPP-conjugated proteins. We screened the library for highly efficient CPPs with no significant cytotoxicity in Escherichia coli and developed a model for predicting the penetration efficiency of a query peptide, enabling the design of new and efficient CPPs. As a proof-of-concept, we used the CPPs for plasmid curing in E. coli and marker gene excision in Methylomonas sp. DH-1. In summary, we demonstrated the utility of CPPs in bacterial engineering. The use of CPPs would facilitate bacterial biotechnology such as genetic engineering, synthetic biology, metabolic engineering, and physiology studies. Lee et al. construct a cell-penetrating peptides (CPP) library and identify CPPs that can penetrate bacterial cells with minimum or no impact on cell viability. For the identified top CPP candidates, their abilities to deliver macromolecules such as I-SceI and Cre recombinase proteins to bacteria are evaluated as proof-of-concept studies for potential applications.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Kha Mong Tran
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Byeong-Min Jeon
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Won-Ung Park
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyunjoo Kim
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yuna Oh
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Myungback Choi
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Dae-Sung Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|