1
|
Lai S, Huang Y, Liu Y, Han F, Zhuang M, Cui X, Li Z. Clubroot resistant in cruciferous crops: recent advances in genes and QTLs identification and utilization. HORTICULTURE RESEARCH 2025; 12:uhaf105. [PMID: 40406504 PMCID: PMC12096309 DOI: 10.1093/hr/uhaf105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/06/2025] [Indexed: 05/26/2025]
Abstract
Clubroot, caused by Plasmodiophora brassicae, poses a serious threat to cruciferous crop production worldwide. Breeding resistant varieties remains the most cost-effective strategy to mitigate yield losses, yet achieving durable, stable, and broad-spectrum resistance continues to be a formidable challenge. Recent advances in genetic and genomic technologies have improved the understanding of complex host-pathogen interactions, leading to the identification of key resistance loci, including dominant resistance genes such as CRa and Crr1, as well as quantitative trait loci. This review discusses the genetic mechanisms governing clubroot resistance and highlights applications in breeding, such as marker-assisted selection and CRISPR/Cas9-based genome editing, which are accelerating the development of resistant germplasm. Furthermore, integrated management strategies, encompassing resistant cultivars, crop rotation, biocontrol agents, and soil amendments, are emphasized as critical components for sustainable disease management. This review summarizes the major resistance genes against clubroot and discusses potential strategies to address the persistent threat posed by the disease.
Collapse
Affiliation(s)
- Shangxiang Lai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| |
Collapse
|
2
|
Xu X, Wu C, Zhang F, Yao J, Fan L, Liu Z, Yao Y. Comprehensive review of Plasmodiophora brassicae: pathogenesis, pathotype diversity, and integrated control methods. Front Microbiol 2025; 16:1531393. [PMID: 39980695 PMCID: PMC11840573 DOI: 10.3389/fmicb.2025.1531393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Clubroot disease is an important disease of cruciferous crops worldwide caused by Plasmodiophora brassicae. The pathogen P. brassicae can infect almost all cruciferous crops, resulting in a reduction in yield and quality of the host plant. The first part of this review outlines the process of P. brassicae infestation, effectors, physiological pathotypes and identification systems. The latter part highlights and summarizes the various current control measures and research progress on clubroot. Finally, we propose a strategic concept for the sustainable management of clubroot. In conclusion, this paper will help to deepen the knowledge of P. brassicae and the understanding of integrated control measures for clubroot, and to lay a solid foundation for the sustainable management of clubroot.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingjuan Yao
- Jiangxi Provincial Key Laboratory of Agricultural Non-Point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
3
|
Li K, Wang K, Shi Y, Liang F, Li X, Bao S, Yesmagul BM, Fatima M, Yu C, Xu A, Zhang X, Fu S, Shi X, Dun X, Zhou Z, Huang Z. BjuA03.BNT1 plays a positive role in resistance to clubroot disease in resynthesized Brassica juncea L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112268. [PMID: 39313004 DOI: 10.1016/j.plantsci.2024.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Clubroot has become a major obstacle in rapeseed production. Breeding varieties resistant to clubroot is the most effective method for disease management. However, the clubroot-resistant germplasm of rapeseed remains limited. To tackle this challenge, we synthesized the clubroot-resistant mustard, CT19, via distant hybridization, and subsequently an F2 segregating population was created by intercrossing CT19 with a clubroot-susceptible germplasm CS15. A major-effect clubroot resistance QTL qCRa3-1 on chromosome A03 was identified through QTL scanning. Transcriptome analyses of CT19 and CS15 revealed that the mechanisms conferring resistance to Plasmodiophora brassica likely involved the regulation of flavonoid metabolism, fatty acid metabolism, and sulfur metabolism. By combining the results from transcriptome, QTL mapping, and gene sequencing, a candidate gene BjuA03.BNT1, encoding NLR (nucleotide-binding domain leucine-rich repeat-containing receptors) protein, was obtained. Intriguingly, comparing with CT19, a base T insertion was discovered in the BjuA03.BNT1 gene's coding sequence in CS15, resulting an alteration within the LRR conserved domain. Overexpression of BjuA03.BNT1 from CT19 notably enhanced the resistance to clubroot in Arabidopsis. Our investigations revealed that BjuA03.BNT1 regulated the resistance to clubroot by modulating fatty acid synthesis and the structure of cell wall. These results are highly relevant for molecular breeding to improve clubroot resistance in rapeseed.
Collapse
Affiliation(s)
- Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fenghao Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinru Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shunjun Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Balziya Maratkyzy Yesmagul
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Maliha Fatima
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengyu Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingguo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sanxiong Fu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Zhaoyong Zhou
- Information Management Office, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Kong L, Yang Y, Zhang Y, Zhan Z, Piao Z. Genetic Mapping and Characterization of the Clubroot Resistance Gene BraPb8.3 in Brassica rapa. Int J Mol Sci 2024; 25:10462. [PMID: 39408790 PMCID: PMC11477069 DOI: 10.3390/ijms251910462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Clubroot, a significant soil-borne disease, severely impacts the productivity of cruciferous crops. The identification and development of clubroot resistance (CR) genes are crucial for mitigating this disease. This study investigated the genetic inheritance of clubroot resistance within an F2 progeny derived from the cross of a resistant parent, designated "377", and a susceptible parent, designated "12A". Notably, "377" exhibited robust resistance to the "KEL-23" strain of Plasmodiophora brassicae, the causative agent of clubroot. Genetic analyses suggested that the observed resistance is controlled by a single dominant gene. Through Bulked Segregant Analysis sequencing (BSA-seq) and preliminary gene mapping, we localized the CR gene locus, designated as BraPb8.3, to a 1.30 Mb genomic segment on chromosome A08, flanked by the markers "333" and "sau332-1". Further fine mapping precisely narrowed down the position of BraPb8.3 to a 173.8 kb region between the markers "srt8-65" and "srt8-25", where we identified 22 genes, including Bra020861 with a TIR-NBS-LRR domain and Bra020876 with an LRR domain. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses confirmed that both Bra020861 and Bra020876 exhibit increased expression levels in the resistant parent "377" following inoculation with P. brassicae, thereby underscoring their potential as key genes implicated in BraPb8.3-mediated clubroot resistance. This study not only identifies molecular markers associated with BraPb8.3 but also enriches the genetic resources available for breeding programs aimed at enhancing resistance to clubroot.
Collapse
Affiliation(s)
- Liyan Kong
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yi Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yufei Zhang
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
5
|
Spasibionek S, Mikołajczyk K, Matuszczak M, Kaczmarek J, Ramzi N, Jędryczka M. HO-CR and HOLL-CR: new forms of winter oilseed rape (Brassica napus L.) with altered fatty acid composition and resistance to selected pathotypes of Plasmodiophora brassicae (clubroot). J Appl Genet 2024; 65:439-452. [PMID: 38637489 PMCID: PMC11310246 DOI: 10.1007/s13353-024-00867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
The priority in oilseed rape (Brassica napus L.) research and breeding programs worldwide is to combine different features to develop cultivars tailored to specific applications of this crop. In this study, forms with a modified fatty acid composition of seed oil were successfully combined with a source of resistance to Plasmodiophora brassicae Wor., a harmful protist-causing clubroot. Three HO-type recombinants in F6-F12 generations with oleic acid content of 80.2-82.1% and one HOLL-type F6 inbred mutant recombinant (HOmut × LLmut), with a high oleic acid content (80.9%) and reduced linolenic acid content (2.3%), were crossed with the cultivar Tosca, resistant to several pathotypes of P. brassicae. The work involved genotyping with the use of DNA markers specific for allelic variants of desaturase genes responsible for the synthesis of oleic and linolenic fatty acids, CAPS (FAD2 desaturase, C18:1), and SNaPshot (FAD3 desaturase, C18:3), respectively. Of 350 progenies in the F3 generation, 192 (55%) were selected for further studies. Among them, 80 HO (≥ 72%) lines were identified, 10 of which showed resistance to at least one up to four P. brassicae pathotypes. Thirty lines in the selected progeny contained high oleic acid and less than 5% linolenic acid; eight of them belonged to the HOLL type conferring resistance to at least one pathotype. Two HO lines and two HOLL lines were resistant to four pathotypes. The resulting HO-CR and HOLL-CR inbred lines with altered seed oil fatty acid composition and resistance to P. brassicae represent unique oilseed rape material with the desired combination of valuable traits.
Collapse
Affiliation(s)
- Stanisław Spasibionek
- Plant Breeding and Acclimatization Institute-National Research Institute, Department of Oilseed Crops, Poznań, Poland
| | - Katarzyna Mikołajczyk
- Plant Breeding and Acclimatization Institute-National Research Institute, Department of Oilseed Crops, Poznań, Poland
| | - Marcin Matuszczak
- Plant Breeding and Acclimatization Institute-National Research Institute, Department of Oilseed Crops, Poznań, Poland
| | - Joanna Kaczmarek
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Noor Ramzi
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | |
Collapse
|
6
|
Botero-Ramirez A, Kirk B, Strelkov SE. Optimizing Clubroot Management and the Role of Canola Cultivar Mixtures. Pathogens 2024; 13:640. [PMID: 39204241 PMCID: PMC11357626 DOI: 10.3390/pathogens13080640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The sustainable cultivation of canola is under threat from clubroot disease (Plasmodiophora brassicae). The pathogen's resting spores can survive in the soil for extended periods, complicating disease management. Therefore, effective clubroot control requires a combination of tactics that provide multiple layers of protection. Management strategies have focused on pathogen avoidance and reducing disease levels in infested fields. The sanitation of machinery and field equipment remains the most effective method for preventing the pathogen's introduction into non-infested fields. For disease reduction, crop rotation, liming, chemical control, and host resistance are commonly employed, with the use of clubroot-resistant cultivars being the most effective to date. However, resistance breakdown has been observed within four years of the introduction of new cultivars, jeopardizing the long-term effectiveness of this approach. A promising yet underexplored strategy is the use of cultivar mixtures. This approach leverages mechanisms such as the dilution effect, the barrier effect, induced resistance, disruptive selection, and the compensatory effect to control the disease. Cultivar mixtures have the potential to reduce the impact of clubroot on canola production while preserving pathogen population structure, thereby minimizing the likelihood of resistance breakdown. Given its potential, further research into cultivar mixtures as a management strategy for clubroot disease is warranted.
Collapse
Affiliation(s)
- Andrea Botero-Ramirez
- Department of Biological Sciences, Faculty of Arts and Science, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Brennon Kirk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| |
Collapse
|
7
|
Baloch A, Shah N, Idrees F, Zhou X, Gan L, Atem JEC, Zhou Y, Piao Z, Chen P, Zhan Z, Zhang C. Pyramiding of triple Clubroot resistance loci conferred superior resistance without negative effects on agronomic traits in Brassica napus. PHYSIOLOGIA PLANTARUM 2024; 176:e14414. [PMID: 38956798 DOI: 10.1111/ppl.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Clubroot disease caused by Plasmodiophora brassicae is becoming a serious threat to rapeseed (Brassica napus) production worldwide. Breeding resistant varieties using CR (clubroot resistance) loci is the most promising solution. Using marker-assisted selection and speed-breeding technologies, we generated Brassica napus materials in homozygous or heterozygous states using CRA3.7, CRA08.1, and CRA3.2 loci in the elite parental line of the Zhongshuang11 background. We developed three elite lines with two CR loci in different combinations and one line with three CR loci at the homozygous state. In our study, we used six different clubroot strains (Xinmin, Lincang, Yuxi, Chengdu, Chongqing, and Jixi) which are categorized into three groups based on our screening results. The newly pyramided lines with two or more CR loci displayed better disease resistance than the parental lines carrying single CR loci. There is an obvious gene dosage effect between CR loci and disease resistance levels. For example, pyramided lines with triple CR loci in the homozygous state showed superior resistance for all pathogens tested. Moreover, CR loci in the homozygous state are better on disease resistance than the heterozygous state. More importantly, no negative effect was observed on agronomic traits for the presence of multiple CR loci in the same background. Overall, these data suggest that the pyramiding of triple clubroot resistance loci conferred superior resistance with no negative effects on agronomic traits in Brassica napus.
Collapse
Affiliation(s)
- Amanullah Baloch
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nadil Shah
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fahad Idrees
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueqing Zhou
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longcai Gan
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jalal Eldeen Chol Atem
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanwei Zhou
- Yichang Academy of Agricultural Science, Yichang, China
| | | | - Peng Chen
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Chunyu Zhang
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Masud Karim M, Yu F. Resynthesizing Brassica napus with race specific resistance genes and race non-specific QTLs to multiple races of Plasmodiophora brassicae. Sci Rep 2024; 14:14627. [PMID: 38918436 PMCID: PMC11199665 DOI: 10.1038/s41598-024-64795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Clubroot disease in canola (Brassica napus) continues to spread across the Canadian prairies. Growing resistant cultivars is considered the most economical means of controlling the disease. However, sources of resistance to clubroot in B. napus are very limited. In this study, we conducted interspecific crosses using a B. rapa line (T19) carrying race-specific resistance genes and two B. oleracea lines, ECD11 and JL04, carrying race non-specific QTLs. Employing embryo rescue and conventional breeding methods, we successfully resynthesized a total of eight B. napus lines, with four derived from T19 × ECD11 and four from T19 × JL04. Additionally, four semi-resynthesized lines were developed through crosses with a canola line (DH16516). Testing for resistance to eight significant races of Plasmodiophora brassicae was conducted on seven resynthesized lines and four semi-resynthesized lines. All lines exhibited high resistance to the strains. Confirmation of the presence of clubroot resistance genes/QTLs was performed in the resynthesized lines using SNP markers linked to race-specific genes in T19 and race non-specific QTLs in ECD11. The developed B. napus germplasms containing clubroot resistance are highly valuable for the development of canola cultivars resistant to clubroot.
Collapse
Affiliation(s)
- Md Masud Karim
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| |
Collapse
|
9
|
Wen R, Song T, Tonu NN, Franke C, Peng G. Resilience of Canola to Plasmodiophora brassicae (Clubroot) Pathotype 3H under Different Resistance Genes and Initial Inoculum Levels. PLANTS (BASEL, SWITZERLAND) 2024; 13:1540. [PMID: 38891348 PMCID: PMC11174560 DOI: 10.3390/plants13111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
In this study, we explored the resilience of a clubroot resistance (CR) stacking model against a field population of Plasmodiophora brassicae pathotype 3H. This contrasts with our earlier work, where stacking CRaM and Crr1rutb proved only moderately resistant to pathotype X. Canola varieties carrying Rcr1/Crr1rutb and Rcr1 + Crr1rutb were repeatedly exposed to 3H at low (1 × 104/g soil) and high (1 × 107/g soil) initial resting spore concentrations over five planting cycles under controlled environments to mimic intensive canola production. Initially, all resistant varieties showed strong resistance. However, there was a gradual decline in resistance over time for varieties carrying only a single CR gene, particularly with Crr1rutb alone and at the high inoculum level, where the disease severity index (DSI) increased from 9% to 39% over five planting cycles. This suggests the presence of virulent pathotypes at initially low levels in the 3H inoculum. In contrast, the variety with stacked CR genes remained resilient, with DSI staying below 3% throughout, even at the high inoculum level. Furthermore, the use of resistant varieties, carrying either a single or stacked CR genes, reduced the total resting spore numbers in soil over time, while the inoculum level either increased or remained high in soils where susceptible Westar was continuously grown. Our study demonstrates greater resistance resilience for stacking Rcr1 and Crr1rutb against the field population of 3H. Additionally, the results suggest that resistance may persist even longer in fields with lower levels of inoculum, highlighting the value of extended crop rotation (reducing inoculum) alongside strategic CR-gene deployment to maximize resistance resilience.
Collapse
Affiliation(s)
- Rui Wen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada; (R.W.); (T.S.); (N.N.T.)
| | - Tao Song
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada; (R.W.); (T.S.); (N.N.T.)
| | - Nazmoon Naher Tonu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada; (R.W.); (T.S.); (N.N.T.)
| | - Coreen Franke
- Nutrien Ag Solutions, 201-407 Downey Road, Saskatoon, SK S7N 4L8, Canada;
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada; (R.W.); (T.S.); (N.N.T.)
| |
Collapse
|
10
|
Zhou X, Zhong T, Wu M, Li Q, Yu W, Gan L, Xiang X, Zhang Y, Shi Y, Zhou Y, Chen P, Zhang C. Multiomics analysis of a resistant European turnip ECD04 during clubroot infection reveals key hub genes underlying resistance mechanism. FRONTIERS IN PLANT SCIENCE 2024; 15:1396602. [PMID: 38845850 PMCID: PMC11153729 DOI: 10.3389/fpls.2024.1396602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
The clubroot disease has become a worldwide threat for crucifer crop production, due to its soil-borne nature and difficulty to eradicate completely from contaminated field. In this study we used an elite resistant European fodder turnip ECD04 and investigated its resistance mechanism using transcriptome, sRNA-seq, degradome and gene editing. A total of 1751 DEGs were identified from three time points after infection, among which 7 hub genes including XTH23 for cell wall assembly and two CPK28 genes in PTI pathways. On microRNA, we identified 17 DEMs and predicted 15 miRNA-target pairs (DEM-DEG). We validated two pairs (miR395-APS4 and miR160-ARF) by degradome sequencing. We investigated the miR395-APS4 pair by CRISPR-Cas9 mediated gene editing, the result showed that knocking-out APS4 could lead to elevated clubroot resistance in B. napus. In summary, the data acquired on transcriptional response and microRNA as well as target genes provide future direction especially gene candidates for genetic improvement of clubroot resistance on Brassica species.
Collapse
Affiliation(s)
- Xueqing Zhou
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ting Zhong
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Meixiu Wu
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Li
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Wenlin Yu
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longcai Gan
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianyu Xiang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunyun Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yaru Shi
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanwei Zhou
- Rice and Oil Research Institute, Yichang Academy of Agricultural Science, Yichang, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Wen R, Song T, Gossen BD, Peng G. Comparative transcriptome analysis of canola carrying a single vs stacked resistance genes against clubroot. FRONTIERS IN PLANT SCIENCE 2024; 15:1358605. [PMID: 38835867 PMCID: PMC11148231 DOI: 10.3389/fpls.2024.1358605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
Pyramiding resistance genes may expand the efficacy and scope of a canola variety against clubroot (Plasmodiophora brassicae), a serious threat to canola production in western Canada. However, the mechanism(s) of multigenic resistance, especially the potential interaction among clubroot resistance (CR) genes, are not well understood. In this study, transcriptome was compared over three canola (Brassica napus L.) inbred/hybrid lines carrying a single CR gene in chromosome A03 (CRaM, Line 16) or A08 (Crr1rutb, Line 20), and both genes (CRaM+Crr1rutb, Line 15) inoculated with a field population (L-G2) of P. brassicae pathotype X, a new variant found in western Canada recently. The line16 was susceptible, while lines 15 and 20 were partially resistant. Functional annotation identified differential expression of genes (DEGs) involved in biosynthetic processes responsive to stress and regulation of cellular process; The Venn diagram showed that the partially resistant lines 15 and 20 shared 1,896 differentially expressed genes relative to the susceptible line 16, and many of these DEGs are involved in defense responses, activation of innate immunity, hormone biosynthesis and programmed cell death. The transcription of genes involved in Pathogen-Associated Molecular Pattern (PAMP)-Triggered and Effector-Triggered Immunity (PTI and ETI) was particularly up-regulated, and the transcription level was higher in line 15 (CRaM + Crr1rutb) than in line 20 (Crr1rutb only) for most of the DEGs. These results indicated that the partial resistance to the pathotype X was likely conferred by the CR gene Crr1rutb for both lines 15 and 20 that functioned via the activation of both PTI and ETI signaling pathways. Additionally, these two CR genes might have synergistic effects against the pathotype X, based on the higher transcription levels of defense-related DEGs expressed by inoculated line 15, highlighting the benefit of gene stacking for improved canola resistance as opposed to a single CR gene alone.
Collapse
Affiliation(s)
- Rui Wen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon SK, Canada
| | - Tao Song
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon SK, Canada
| | - Bruce D Gossen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon SK, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon SK, Canada
| |
Collapse
|
12
|
Wei X, Xiao S, Zhao Y, Zhang L, Nath UK, Yang S, Su H, Zhang W, Wang Z, Tian B, Wei F, Yuan Y, Zhang X. Fine mapping and candidate gene analysis of CRA8.1.6, which confers clubroot resistance in turnip ( Brassica rapa ssp. rapa). FRONTIERS IN PLANT SCIENCE 2024; 15:1355090. [PMID: 38828217 PMCID: PMC11140098 DOI: 10.3389/fpls.2024.1355090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/21/2024] [Indexed: 06/05/2024]
Abstract
Clubroot disease poses a significant threat to Brassica crops, necessitating ongoing updates on resistance gene sources. In F2 segregants of the clubroot-resistant inbred line BrT18-6-4-3 and susceptible DH line Y510, the genetic analysis identified a single dominant gene responsible for clubroot resistance. Through bulk segregant sequencing analysis and kompetitive allele-specific polymerase chain reaction assays, CRA8.1.6 was mapped within 110 kb (12,255-12,365 Mb) between markers L-CR11 and L-CR12 on chromosome A08. We identified B raA08g015220.3.5C as the candidate gene of CRA8.1.6. Upon comparison with the sequence of disease-resistant material BrT18-6-4-3, we found 249 single-nucleotide polymorphisms, seven insertions, six deletions, and a long terminal repeat (LTR) retrotransposon (5,310 bp) at 909 bp of the first intron. However, the LTR retrotransposon was absent in the coding sequence of the susceptible DH line Y510. Given the presence of a non-functional LTR insertion in other materials, it showed that the LTR insertion might not be associated with susceptibility. Sequence alignment analysis revealed that the fourth exon of the susceptible line harbored two deletions and an insertion, resulting in a frameshift mutation at 8,551 bp, leading to translation termination at the leucine-rich repeat domain's C-terminal in susceptible material. Sequence alignment of the CDS revealed a 99.4% similarity to Crr1a, which indicate that CRA8.1.6 is likely an allele of the Crr1a gene. Two functional markers, CRA08-InDel and CRA08-KASP1, have been developed for marker-assisted selection in CR turnip cultivars. Our findings could facilitate the development of clubroot-resistance turnip cultivars through marker-assisted selection.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shixiong Xiao
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanyan Zhao
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Luyue Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shuangjuan Yang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Su
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjing Zhang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyong Wang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Baoming Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuxiang Yuan
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaowei Zhang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Yu Z, Fredua-Agyeman R, Strelkov SE, Hwang SF. RNA-Seq Bulked Segregant Analysis of an Exotic B. napus ssp. napobrassica (Rutabaga) F 2 Population Reveals Novel QTLs for Breeding Clubroot-Resistant Canola. Int J Mol Sci 2024; 25:4596. [PMID: 38731814 PMCID: PMC11083300 DOI: 10.3390/ijms25094596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, a rutabaga (Brassica napus ssp. napobrassica) donor parent FGRA106, which exhibited broad-spectrum resistance to 17 isolates representing 16 pathotypes of Plasmodiophora brassicae, was used in genetic crosses with the susceptible spring-type canola (B. napus ssp. napus) accession FG769. The F2 plants derived from a clubroot-resistant F1 plant were screened against three P. brassicae isolates representing pathotypes 3A, 3D, and 3H. Chi-square (χ2) goodness-of-fit tests indicated that the F2 plants inherited two major clubroot resistance genes from the CR donor FGRA106. The total RNA from plants resistant (R) and susceptible (S) to each pathotype were pooled and subjected to bulked segregant RNA-sequencing (BSR-Seq). The analysis of gene expression profiles identified 431, 67, and 98 differentially expressed genes (DEGs) between the R and S bulks. The variant calling method indicated a total of 12 (7 major + 5 minor) QTLs across seven chromosomes. The seven major QTLs included: BnaA5P3A.CRX1.1, BnaC1P3H.CRX1.2, and BnaC7P3A.CRX1.1 on chromosomes A05, C01, and C07, respectively; and BnaA8P3D.CRX1.1, BnaA8P3D.RCr91.2/BnaA8P3H.RCr91.2, BnaA8P3H.Crr11.3/BnaA8P3D.Crr11.3, and BnaA8P3D.qBrCR381.4 on chromosome A08. A total of 16 of the DEGs were located in the major QTL regions, 13 of which were on chromosome C07. The molecular data suggested that clubroot resistance in FGRA106 may be controlled by major and minor genes on both the A and C genomes, which are deployed in different combinations to confer resistance to the different isolates. This study provides valuable germplasm for the breeding of clubroot-resistant B. napus cultivars in Western Canada.
Collapse
Affiliation(s)
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (Z.Y.); (S.-F.H.)
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (Z.Y.); (S.-F.H.)
| | | |
Collapse
|
14
|
Hu H, Zhang Y, Yu F. A CRISPR/Cas9-based vector system enables the fast breeding of selection-marker-free canola with Rcr1-rendered clubroot resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1347-1363. [PMID: 37991105 PMCID: PMC10901203 DOI: 10.1093/jxb/erad471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Breeding for disease resistance in major crops is of crucial importance for global food security and sustainability. However, common biotechnologies such as traditional transgenesis or genome editing do not provide an ideal solution, whereas transgenic crops free of selection markers such as cisgenic/intragenic crops might be suitable. In this study, after cloning and functional verification of the Rcr1 gene for resistance to clubroot (Plasmodiophora brassicae), we confirmed that the genes Rcr1, Rcr2, Rcr4, and CRa from Brassica rapa crops and the resistance gene from B. napus oilseed rape cv. 'Mendel' on chromosome A03 were identical in their coding regions. We also determined that Rcr1 has a wide distribution in Brassica breeding materials and renders potent resistance against multiple representative clubroot strains in Canada. We then modified a CRISPR/Cas9-based cisgenic vector system and found that it enabled the fast breeding of selection-marker-free transgenic crops with add-on traits, with selection-marker-free canola (B. napus) germplasms with Rcr1-rendered stable resistance to clubroot disease being successfully developed within 2 years. In the B. napus background, the intragenic vector system was able to remove unwanted residue sequences from the final product with high editing efficiency, and off-target mutations were not detected. Our study demonstrates the potential of applying this breeding strategy to other crops that can be transformed by Agrobacterium. Following the streamlined working procedure, intragenic germplasms can be developed within two generations, which could significantly reduce the breeding time and labor compared to traditional introgression whilst still achieving comparable or even better breeding results.
Collapse
Affiliation(s)
- Hao Hu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yan Zhang
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Fengqun Yu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
15
|
Karim MM, Yu F. Identification of QTLs for resistance to 10 pathotypes of Plasmodiophora brassicae in Brassica oleracea cultivar ECD11 through genotyping-by-sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:249. [PMID: 37982891 PMCID: PMC10661809 DOI: 10.1007/s00122-023-04483-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/09/2023] [Indexed: 11/21/2023]
Abstract
KEY MESSAGE Two major quantitative trait loci (QTLs) and five minor QTLs for 10 pathotypes were identified on chromosomes C01, C03, C04 and C08 through genotyping-by-sequencing from Brassica oleracea. Clubroot caused by Plasmodiophora brassicae is an important disease in brassica crops. Managing clubroot disease of canola on the Canadian prairie is challenging due to the continuous emergence of new pathotypes. Brassica oleracea is considered a major source of quantitative resistance to clubroot. Genotyping-by-sequencing (GBS) was performed in the parental lines; T010000DH3 (susceptible), ECD11 (resistant) and 124 BC1 plants. A total of 4769 high-quality polymorphic SNP loci were obtained and distributed on 9 chromosomes of B. oleracea. Evaluation of 124 BC1S1 lines for resistance to 10 pathotypes: 3A, 2B, 5C, 3D, 5G, 3H, 8J, 5K, 5L and 3O of P. brassicae, was carried out. Seven QTLs, 5 originating from ECD11 and 2 from T010000DH3, were detected. One major QTL designated as Rcr_C03-1 on C03 contributed 16.0-65.6% of phenotypic variation explained (PVE) for 8 pathotypes: 2B, 5C, 5G, 3H, 8J, 5K, 5L and 3O. Another major QTL designated as Rcr_C08-1 on C08 contributed 8.3 and 23.5% PVE for resistance to 8J and 5K, respectively. Five minor QTLs designated as Rcr_C01-1, Rcr_C03-2, Rcr_C03-3, Rcr_C04-1 and Rcr_C08-2 were detected on chromosomes C01, C03, C04 and C08 that contributed 8.3-23.5% PVE for 5 pathotypes each of 3A, 2B, 3D, 8J and 5K. There were 1, 10 and 4 genes encoding TIR-NBS-LRR/CC-NBS-LRR class disease resistance proteins in the Rcr_C01-1, Rcr_C03-1 and Rcr_C08-1 flanking regions. The syntenic regions of the two major QTLs Rcr_C03-1 and Rcr_C08-1 in the B. rapa genome 'Chiifu' were searched.
Collapse
Affiliation(s)
- Md Masud Karim
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| |
Collapse
|
16
|
Tonu NN, Wen R, Song T, Guo X, Murphy LA, Gossen BD, Yu F, Peng G. Canola with Stacked Genes Shows Moderate Resistance and Resilience against a Field Population of Plasmodiophora brassicae (Clubroot) Pathotype X. PLANTS (BASEL, SWITZERLAND) 2023; 12:726. [PMID: 36840074 PMCID: PMC9960129 DOI: 10.3390/plants12040726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Genetic resistance is a cornerstone for managing clubroot (Plasmodiophora brassicae). However, when used repeatedly, a clubroot resistance (CR) gene can be broken rapidly. In this study, canola inbred/hybrid lines carrying one or two CR genes (Rcr1/CRaM and Crr1rutb) were assessed against P. brassicae pathotype X by repeated exposure to the same inoculum source under a controlled environment. Lines carrying two CR genes, either Rcr1 + Crr1rutb or CRaM + Crr1rutb, showed partial resistance. Selected lines were inoculated with a field pathotype X population (L-G3) at 5 × 106 resting spores/g soil, and all clubs were returned to the soil they came from six weeks after inoculation. The planting was repeated for five cycles, with diseased roots being returned to the soil after each cycle. The soil inoculum was quantified using qPCR before each planting cycle. All lines with a single CR gene were consistently susceptible, maintaining high soil inoculum levels over time. The lines carrying two CR genes showed much lower clubroot severity, resulting in a 10-fold decline in soil inoculum. These results showed that the CR-gene stacking provided moderate resistance against P. brassicae pathotype X, which may also help reduce the pathogen inoculum buildup in soil.
Collapse
Affiliation(s)
- Nazmoon Naher Tonu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Rui Wen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Tao Song
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Xiaowei Guo
- Pest Surveillance Initiative, 5A-1325 Markham Road, Winnipeg, MB R3T 4J6, Canada
| | - Lee Anne Murphy
- Pest Surveillance Initiative, 5A-1325 Markham Road, Winnipeg, MB R3T 4J6, Canada
| | - Bruce Dean Gossen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
17
|
Adhikary D, Kisiala A, Sarkar A, Basu U, Rahman H, Emery N, Kav NNV. Early-stage responses to Plasmodiophora brassicae at the transcriptome and metabolome levels in clubroot resistant and susceptible oilseed Brassica napus. Mol Omics 2022; 18:991-1014. [PMID: 36382681 DOI: 10.1039/d2mo00251e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clubroot, a devastating soil-borne root disease, in Brassicaceae is caused by Plasmodiophora brassicae Woronin (P. brassicae W.), an obligate biotrophic protist. Plant growth and development, as well as seed yield of Brassica crops, are severely affected due to this disease. Several reports described the molecular responses of B. napus to P. brassicae; however, information on the early stages of pathogenesis is limited. In this study, we have used transcriptomics and metabolomics to characterize P. brassicae pathogenesis at 1-, 4-, and 7-days post-inoculation (DPI) in clubroot resistant (CR) and susceptible (CS) doubled-haploid (DH) canola lines. When we compared between inoculated and uninoculated groups, a total of 214 and 324 putative genes exhibited differential expression (q-value < 0.05) at one or more time-points in the CR and CS genotypes, respectively. When the inoculated CR and inoculated CS genotypes were compared, 4765 DEGs were differentially expressed (q-value < 0.05) at one or more time-points. Several metabolites related to organic acids (e.g., citrate, pyruvate), amino acids (e.g., proline, aspartate), sugars, and mannitol, were differentially accumulated in roots in response to pathogen infection when the CR and CS genotypes were compared. Several DEGs also corresponded to differentially accumulated metabolites, including pyrroline-5-carboxylate reductase (BnaC04g11450D), citrate synthase (BnaC02g39080D), and pyruvate kinase (BnaC04g23180D) as detected by transcriptome analysis. Our results suggest important roles for these genes in mediating resistance to clubroot disease. To our knowledge, this is the first report of an integrated transcriptome and metabolome analysis aimed at characterizing the molecular basis of resistance to clubroot in canola.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Ananya Sarkar
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Neil Emery
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Rahaman M, Strelkov SE, Hu H, Gossen BD, Yu F. Identification of a genomic region containing genes involved in resistance to four pathotypes of Plasmodiophora brassicae in Brassica rapa turnip ECD02. THE PLANT GENOME 2022; 15:e20245. [PMID: 35971879 DOI: 10.1002/tpg2.20245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is an important disease of brassica crops worldwide. Vegetable turnip (Brassica rapa L.) have proven to be a source of clubroot resistance genes effective against many pathotypes of P. brassicae. The F1 progeny from the cross B. rapa canola ACDC (susceptible, S) × B. rapa turnip ECD02 (resistant, R) were backcrossed with ACDC, then self-pollinated to produce BC1 S1 lines. All the F1 plants were resistant to four pathotypes (3A, 3D, 3H, and 5X) of P. brassicae. Segregation for R and S in BC1 to each pathotype was 1:1 and resistance reactions were highly correlated. From whole genome sequencing, 192.1 M sequences with 96% template coverage from ECD02, and 478.9 M sequences with 92% coverage from ACDC, were aligned with the reference genome of B. rapa. Genotyping-by-sequencing was performed on the BC1 population. The number of aligned short reads per plant in the BC1 ranged from 1.4 to 8.5 M sequences with 4-8% template coverage. We obtained 1,344 high-quality single-nucleotide polymorphism (SNP) loci with a mean missing rate at 0.27% and distributed them on 10 chromosomes. A single co-localized quantitative trait loci (QTL), designated as Rcr9ECD02 on chromosome A08, conferred resistance to the four pathotypes. The QTL explained 68.9-74.4% of phenotypic variation with the logarithm of the odds values of 24.3 to 31.1. Bulked segregant analysis was performed, and 14 SNP markers linked to the gene were developed using the Kompetitive Allele Specific PCR. Rcr9ECD02 was mapped into an interval of 2.2 cM, flanked by CF_A08_10664692 and CF_A08_12230973, which spanned 1.51 Mb on the chromosome and included 219 B. rapa genes. Four of these genes (BraA08g012910.3C, BraA08g012920.3C, BraA08g013130.3C, and BraA08g013630.3C) encoded disease resistance proteins.
Collapse
Affiliation(s)
- Mizanur Rahaman
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Stephen E Strelkov
- Dep. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Hao Hu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Bruce D Gossen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
19
|
Zhai R, Huang A, Mo R, Zou C, Wei X, Yang M, Tan H, Huang K, Qin J. SNP-based bulk segregant analysis revealed disease resistance QTLs associated with northern corn leaf blight in maize. Front Genet 2022; 13:1038948. [PMID: 36506330 PMCID: PMC9732028 DOI: 10.3389/fgene.2022.1038948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Maize (Zea mays L.) is the most important food security crop worldwide. Northern corn leaf blight (NCLB), caused by Exserohilum turcicum, severely reduces production causing millions of dollars in losses worldwide. Therefore, this study aimed to identify significant QTLs associated with NCLB by utilizing next-generation sequencing-based bulked-segregant analysis (BSA). Parental lines GML71 (resistant) and Gui A10341 (susceptible) were used to develop segregating population F2. Two bulks with 30 plants each were further selected from the segregating population for sequencing along with the parental lines. High throughput sequencing data was used for BSA. We identified 10 QTLs on Chr 1, Chr 2, Chr 3, and Chr 5 with 265 non-synonymous SNPs. Moreover, based on annotation information, we identified 27 candidate genes in the QTL regions. The candidate genes associated with disease resistance include AATP1, At4g24790, STICHEL-like 2, BI O 3-BIO1, ZAR1, SECA2, ABCG25, LECRK54, MKK7, MKK9, RLK902, and DEAD-box ATP-dependent RNA helicase. The annotation information suggested their involvement in disease resistance-related pathways, including protein phosphorylation, cytoplasmic vesicle, protein serine/threonine kinase activity, and ATP binding pathways. Our study provides a substantial addition to the available information regarding QTLs associated with NCLB, and further functional verification of identified candidate genes can broaden the scope of understanding the NCLB resistance mechanism in maize.
Collapse
Affiliation(s)
- Ruining Zhai
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Aihua Huang
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Runxiu Mo
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Chenglin Zou
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xinxing Wei
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Meng Yang
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Hua Tan
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Kaijian Huang
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China,*Correspondence: Kaijian Huang, ; Jie Qin,
| | - Jie Qin
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China,*Correspondence: Kaijian Huang, ; Jie Qin,
| |
Collapse
|
20
|
Improvement of Resistance to Clubroot Disease in the Ogura CMS Restorer Line R2163 of Brassica napus. PLANTS 2022; 11:plants11182413. [PMID: 36145814 PMCID: PMC9504965 DOI: 10.3390/plants11182413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
Oilseed rape (Brassica napus) has significant heterosis and Ogura CMS is a major way to use it. Ogura CMS has the advantages of complete and stable male sterility and easy-to-breed maintainers. Therefore, to breed better restorers has become an important goal for this system. Incidentally, clubroot is a soil-borne disease that is difficult to control by fungicidal chemicals, and it has been the main disease of oilseed rape in recent years in China, severely restricting the development of the oilseed rape industry. At present, the most effective method for controlling clubroot disease is to cultivate resistant varieties. One Ogura CMS restorer line (R2163) has shown much better combining ability, but lacks the clubroot disease resistance. This study was carried out to improve R2163 through marker-assisted backcross breeding (MABB). The resistant locus PbBa8.1 was introduced into the restorer R2163, and we then selected R2163R with clubroot disease resistance. Using the new restorer R2163R as the male parent and the sterile lines 116A and Z11A as the female parent, the improved, new resistant hybrids Kenyouza 741R and Huayouza 706R performed well, providing strong resistance and good agronomic traits. This work advances the utilization of heterosis and breeding for clubroot disease resistance in B. napus.
Collapse
|
21
|
Wang Z, Megha S, Kebede B, Kav NNV, Rahman H. Genetic and molecular analysis reveals that two major loci and their interaction confer clubroot resistance in canola introgressed from rutabaga. THE PLANT GENOME 2022; 15:e20241. [PMID: 35818693 DOI: 10.1002/tpg2.20241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Clubroot disease caused by Plasmodiophora brassicae is one of the serious threats to canola (Brassica napus L. subsp. napus) production. The evolution of new pathotypes rendering available resistances ineffective compel the introgression of new resistance into canola and extend our understanding of the genetic and molecular basis of the resistance. In this paper, we report the genetic and molecular basis of clubroot resistance in canola, introgressed from a rutabaga (B. napus L. subsp. rapifera Metzg. 'Polycross'), by using a doubled-haploid (DH) mapping population. Whole-genome resequencing (WGRS)-based bulked segregant analysis followed by genetic mapping and expression analysis of the genes in resistant and susceptible DH lines at 7 and 14 d after inoculation were carried out. Following this approach, two major quantitative trait loci (QTL) located at 14.41-15.44 Mb of A03 and at 9.96-11.09 Mb of A08 chromosomes and their interaction was observed to confer resistance to pathotypes 3H, 3A, and 3D. Analysis of the genes from the two QTL regions suggested that decreased expression of sugar transporter genes (BnaA03g29290D and BnaA03g29310D) may play an important role in resistance conferred by the A03 QTL, while increased expression of the toll/interleukin-1 receptor (TIR)-nucleotide binding (NB)-leucine rich repeat (LRR) (TNL) genes (BnaA08g10100D, BnaA08g09220D, and BnaA08g10540D) could be the major determinant of the resistance conferred by the A08 QTL. Single-nucleotide polymorphism (SNP) allele-specific polymerase chain reaction (PCR)-based markers, which could be detected by agarose gel electrophoresis, were also developed from the two QTL regions for use in breeding including pyramiding of multiple clubroot resistance genes.
Collapse
Affiliation(s)
- Z Wang
- Dep. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - S Megha
- Dep. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - B Kebede
- Dep. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - N N V Kav
- Dep. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - H Rahman
- Dep. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|
22
|
Shaw RK, Shen Y, Yu H, Sheng X, Wang J, Gu H. Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. Int J Mol Sci 2022; 23:9280. [PMID: 36012543 PMCID: PMC9409056 DOI: 10.3390/ijms23169280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brassica oleracea is an agronomically important species of the Brassicaceae family, including several nutrient-rich vegetables grown and consumed across the continents. But its sustainability is heavily constrained by a range of destructive pathogens, among which, clubroot disease, caused by a biotrophic protist Plasmodiophora brassicae, has caused significant yield and economic losses worldwide, thereby threatening global food security. To counter the pathogen attack, it demands a better understanding of the complex phenomenon of Brassica-P. brassicae pathosystem at the physiological, biochemical, molecular, and cellular levels. In recent years, multiple omics technologies with high-throughput techniques have emerged as successful in elucidating the responses to biotic and abiotic stresses. In Brassica spp., omics technologies such as genomics, transcriptomics, ncRNAomics, proteomics, and metabolomics are well documented, allowing us to gain insights into the dynamic changes that transpired during host-pathogen interactions at a deeper level. So, it is critical that we must review the recent advances in omics approaches and discuss how the current knowledge in multi-omics technologies has been able to breed high-quality clubroot-resistant B. oleracea. This review highlights the recent advances made in utilizing various omics approaches to understand the host resistance mechanisms adopted by Brassica crops in response to the P. brassicae attack. Finally, we have discussed the bottlenecks and the way forward to overcome the persisting knowledge gaps in delivering solutions to breed clubroot-resistant Brassica crops in a holistic, targeted, and precise way.
Collapse
Affiliation(s)
| | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
23
|
Guo Y, Li B, Li M, Zhu H, Yang Q, Liu X, Qu L, Fan L, Wang T. Efficient marker-assisted breeding for clubroot resistance in elite Pol-CMS rapeseed varieties by updating the PbBa8.1 locus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:41. [PMID: 37313506 PMCID: PMC10248692 DOI: 10.1007/s11032-022-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Clubroot disease poses a severe threat to rapeseed (Brassica napus) production worldwide and has recently been spreading across China at an unprecedented pace. Breeding and cultivation of resistant varieties constitute a promising and environment-friendly approach to mitigating this threat. In this study, the clubroot resistance locus PbBa8.1 was successfully transferred into SC4, a shared paternal line of three elite varieties in five generations by marker-assisted backcross breeding. Kompetitive allele specific PCR (KASP) markers of clubroot resistance gene PbBa8.1 and its linked high erucic acid gene (FAE1) were designed and applied for foreground selection, and 1,000 single-nucleotide polymorphisms (SNPs) were selected and used for the background selection. This breeding strategy produced recombinants with the highest recovery ratio of the recurrent parent genome (> 95%) at BC2F2 while breaking the linkage with FAE1 during the selection. An updated version of the paternal line (SC4R) was generated at BC2F3, showing significantly improved clubroot resistance at the seedling stage via artificial inoculation, and was comparable to that of the donor parent. Field trials of the three elite varieties and their updated versions in five environments indicated similar agronomic appearance and final yield. The introduced breeding strategy precisely pyramids the PbBa8.1 and FAE1 loci with the assistance of technical markers in a shorter period and could be applied to other desirable traits for directional improvement in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01305-9.
Collapse
Affiliation(s)
- Yiming Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Hongjian Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128 China
| | - Qian Yang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Xinhong Liu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Liang Qu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Lianyi Fan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| |
Collapse
|
24
|
Hatakeyama K, Yuzawa S, Tonosaki K, Takahata Y, Matsumoto S. Allelic variation of a clubroot resistance gene ( Crr1a) in Japanese cultivars of Chinese cabbage ( Brassica rapa L.). BREEDING SCIENCE 2022; 72:115-123. [PMID: 36275933 PMCID: PMC9522534 DOI: 10.1270/jsbbs.21040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/24/2021] [Indexed: 05/08/2023]
Abstract
Clubroot resistance (CR) is an important trait in Chinese cabbage breeding worldwide. Although Crr1a, the gene responsible for clubroot-resistance, has been cloned and shown to encode the NLR protein, its allelic variation and molecular function remain unknown. Here, we investigated the sequence variation and function of three Crr1a alleles cloned from six CR F1 cultivars of Chinese cabbage. Gain-of-function analysis revealed that Crr1aKinami90_a isolated from the cv. 'Kinami 90' conferred clubroot resistance as observed for Crr1aG004 . Because two susceptible alleles commonly lacked 172 amino acids in the C-terminal region, we investigated clubroot resistance in transgenic Arabidopsis harboring the chimeric Crr1a, in which 172 amino acids of the functional alleles were fused to the susceptible alleles. The fusion of the C-terminal region to the susceptible alleles restored resistance, indicating that their susceptibility was caused by the lack of the C-terminus. We developed DNA markers to detect the two functional Crr1a alleles, and demonstrated that the functional Crr1a alleles were frequently found in European fodder turnips, whereas they were rarely introduced into Japanese CR cultivars of Chinese cabbage. These results would contribute to CR breeding via marker-assisted selection and help our understanding of the molecular mechanisms underlying clubroot resistance.
Collapse
Affiliation(s)
- Katsunori Hatakeyama
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Institute of Vegetable and Floriculture Science, NARO, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8519, Japan
- Corresponding author (e-mail: )
| | - Shota Yuzawa
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Kaoru Tonosaki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yoshihito Takahata
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Satoru Matsumoto
- Institute of Vegetable and Floriculture Science, NARO, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8519, Japan
| |
Collapse
|
25
|
Yu F, Zhang Y, Wang J, Chen Q, Karim MM, Gossen BD, Peng G. Identification of Two Major QTLs in Brassica napus Lines With Introgressed Clubroot Resistance From Turnip Cultivar ECD01. FRONTIERS IN PLANT SCIENCE 2022; 12:785989. [PMID: 35095960 PMCID: PMC8790046 DOI: 10.3389/fpls.2021.785989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/02/2021] [Indexed: 05/31/2023]
Abstract
Plasmodiophora brassicae causes clubroot disease in brassica crops worldwide. Brassica rapa, a progenitor of Brassica napus (canola), possesses important sources for resistance to clubroot. A doubled haploid (DH) population consisting of 84 DH lines were developed from a Backcross2 (BC2) plant through an interspecific cross of B. rapa turnip cv. ECD01 (resistant, R) with canola line DH16516 (susceptible, S) and then backcrossed with DH16516 as the recurrent parent. The DH lines and their parental lines were tested for resistance to four major pathotypes (3A, 3D, 3H, and 5X) of P. brassicae identified from canola. The R:S segregation ratio for pathotype 3A was 1:3, and 3:1 for pathotypes 3D, 3H, and 5X. From genotyping by sequencing (GBS), a total of 355.3 M short reads were obtained from the 84 DH lines, ranging from 0.81 to 11.67 M sequences per line. The short reads were aligned into the A-genome of B. napus "Darmor-bzh" version 4.1 with a total of 260 non-redundant single-nucleotide polymorphism (SNP) sites. Two quantitative trait loci (QTLs), Rcr10 ECD01 and Rcr9 ECD01 , were detected for the pathotypes in chromosomes A03 and A08, respectively. Rcr10 ECD01 and Rcr9 ECD01 were responsible for resistance to 3A, 3D, and 3H, while only one QTL, Rcr9 ECD01 , was responsible for resistance to pathotype 5X. The logarithm of the odds (LOD) values, phenotypic variation explained (PVE), additive (Add) values, and confidence interval (CI) from the estimated QTL position varied with QTL, with a range of 5.2-12.2 for LOD, 16.2-43.3% for PVE, 14.3-25.4 for Add, and 1.5-12.0 cM for CI. The presence of the QTLs on the chromosomes was confirmed through the identification of the percentage of polymorphic variants using bulked-segregant analysis. There was one gene encoding a disease resistance protein and 24 genes encoding proteins with function related to plant defense response in the Rcr10 ECD01 target region. In the Rcr9 ECD01 region, two genes encoded disease resistance proteins and 10 genes encoded with defense-related function. The target regions for Rcr10 ECD01 and Rcr9 ECD01 in B. napus were homologous to the 11.0-16.0 Mb interval of chromosome A03 and the 12.0-14.5 Mb interval of A08 in B. rapa "Chiifu" reference genome, respectively.
Collapse
|
26
|
Identification and Fine-Mapping of Clubroot (Plasmodiophora brassicae) Resistant QTL in Brassica rapa. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
European fodder turnips (Brassica rapa ssp. rapifera) were identified as sources of clubroot resistance (CR) and have been widely used in Brassica resistance breeding. An F2 population derived from a cross between a resistant turnip and a susceptible Chinese cabbage was used to determine the inheritance and locating the resistance Quantitative Trait Loci (QTLs). The parents showed to be very resistant/susceptible to the field isolates (pathotype 4) of clubroot from Henan in China. After inoculation, 27 very resistant or susceptible individuals were selected to construct bulks, respectively. Next-generation-sequencing-based Bulk Segregant Analysis Sequencing (BSA-Seq) was used and located resistance QTL on chromosome A03 (3.3–7.5 Mb) and A08 (0.01–6.5 Mb), named Bcr1 and Bcr2, respectively. Furthermore, an F3 population including 180 families derived from F2 individuals was phenotyped and used to verify and narrow candidate regions. Ten and seven Kompetitive Allele-Specific PCR (KASP) markers narrowed the target regions to 4.3–4.78 Mb (A03) and 0.02–0.79 Mb (A08), respectively. The phenotypic variation explained (PVE) of the two QTLs were 33.3% and 13.3% respectively. The two candidate regions contained 99 and 109 genes. In the A03 candidate region, there were three candidate R genes, namely Bra006630, Bra006631 and Bra006632. In the A08 candidate region, there were two candidate R genes, namely Bra030815 and Bra030846.
Collapse
|
27
|
Wang Y, Xiang X, Huang F, Yu W, Zhou X, Li B, Zhang Y, Chen P, Zhang C. Fine Mapping of Clubroot Resistance Loci CRA8.1 and Candidate Gene Analysis in Chinese Cabbage ( Brassica rapa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:898108. [PMID: 35599882 PMCID: PMC9121064 DOI: 10.3389/fpls.2022.898108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/07/2022] [Indexed: 05/08/2023]
Abstract
Clubroot is caused by Plasmodiophora brassicae, which threatens Brassicaceae crop production worldwide. In recent years, there has been an outbreak and rapid spread of clubroot in many major cruciferous crop-producing areas of China. In this study, we identified a cabbage material DingWen (DW) with different resistant capabilities from Huashuang5R (H5R) and Huayouza62R of Brassica napus, which are currently used as the main resistant cultivars for clubroot management in China. We used a next-generation sequencing-based bulked segregant analysis approach, combined with genetic mapping to identify clubroot-resistant (CR) genes from F1 population generated from a cross between the DW (CR) and HZSX (clubroot susceptible). The CR locus of DW (named CRA8.1) was mapped to a region between markers A08-4346 and A08-4853, which contains two different loci CRA8.1a and CRA8.1b after fine mapping. The CRA8.1b loci contain a fragment of 395 kb between markers A08-4624 and A08-4853 on A08 chromosome, and it is responsible for the resistance to PbZj and PbXm isolates. However, together with CRA8.1a, corresponding to a 765-kb region between markers A08-4346 and A08-4624, then it can confer resistance to PbXm +. Finally, through expression analysis between resistant and susceptible materials, two genes encoding TIR-NBS-LRR proteins (BraA08g039211E and BraA08g039212E) and one gene encoding an RLP protein (BraA08g039193E) were identified to be the most likely CR candidates for the peculiar resistance in DW.
Collapse
Affiliation(s)
- Yanyan Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianyu Xiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fan Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueqing Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baojun Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Yunyun Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Peng Chen,
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Chunyu Zhang,
| |
Collapse
|
28
|
Ce F, Mei J, He H, Zhao Y, Hu W, Yu F, Li Q, Ren X, Si J, Song H, Qian W. Identification of Candidate Genes for Clubroot-Resistance in Brassica oleracea Using Quantitative Trait Loci-Sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:703520. [PMID: 34868102 PMCID: PMC8635040 DOI: 10.3389/fpls.2021.703520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/19/2021] [Indexed: 05/27/2023]
Abstract
Clubroot caused by Plasmodiophora brassicae is a devastating disease of cabbage (Brassica oleracea). To identify quantitative trait loci (QTLs) for clubroot resistance (CR) in B. oleracea, genomic resequencing was carried out in two sets of extreme pools, group I and group II, which were constructed separately from 110 and 74 F2 cloned lines derived from the cross between clubroot-resistant (R) cabbage "GZ87" (against race 4) and susceptible (S) cabbage "263." Based on the QTL-sequencing (QTL-Seq) analysis of group I and group II, three QTLs (i.e., qCRc7-2, qCRc7-3, and qCRc7-4) were determined on the C07 chromosome. RNA-Seq and qRT-PCR were conducted in the extreme pools of group II before and after inoculation, and two potential candidate genes (i.e., Bol037115 and Bol042270), which exhibiting upregulation after inoculation in the R pool but downregulation in the S pool, were identified from the three QTLs on C07. A functional marker "SWU-OA" was developed from qCRc7-4 on C07, exhibiting ∼95% accuracy in identifying CR in 56 F2 lines. Our study will provide valuable information on resistance genes against P. brassicae and may accelerate the breeding process of B. oleracea with CR.
Collapse
Affiliation(s)
- Fuquan Ce
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Haiyan He
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Yu Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
| | - Wenhui Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Fengqun Yu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Center, Saskatoon, SK, Canada
| | - Qinfei Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Xuesong Ren
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Jun Si
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Hongyuan Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| |
Collapse
|
29
|
MiR1885 Regulates Disease Tolerance Genes in Brassica rapa during Early Infection with Plasmodiophora brassicae. Int J Mol Sci 2021; 22:ijms22179433. [PMID: 34502341 PMCID: PMC8430504 DOI: 10.3390/ijms22179433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
Clubroot caused by Plasmodiophora brassicae is a severe disease of cruciferous crops that decreases crop quality and productivity. Several clubroot resistance-related quantitative trait loci and candidate genes have been identified. However, the underlying regulatory mechanism, the interrelationships among genes, and how genes are regulated remain unexplored. MicroRNAs (miRNAs) are attracting attention as regulators of gene expression, including during biotic stress responses. The main objective of this study was to understand how miRNAs regulate clubroot resistance-related genes in P. brassicae-infected Brassica rapa. Two Brassica miRNAs, Bra-miR1885a and Bra-miR1885b, were revealed to target TIR-NBS genes. In non-infected plants, both miRNAs were expressed at low levels to maintain the balance between plant development and basal immunity. However, their expression levels increased in P. brassicae-infected plants. Both miRNAs down-regulated the expression of the TIR-NBS genes Bra019412 and Bra019410, which are located at a clubroot resistance-related quantitative trait locus. The Bra-miR1885-mediated down-regulation of both genes was detected for up to 15 days post-inoculation in the clubroot-resistant line CR Shinki and in the clubroot-susceptible line 94SK. A qRT-PCR analysis revealed Bra019412 expression was negatively regulated by miR1885. Both Bra019412 and Bra019410 were more highly expressed in CR Shinki than in 94SK; the same expression pattern was detected in multiple clubroot-resistant and clubroot-susceptible inbred lines. A 5′ rapid amplification of cDNA ends analysis confirmed the cleavage of Bra019412 by Bra-miR1885b. Thus, miR1885s potentially regulate TIR-NBS gene expression during P. brassicae infections of B. rapa.
Collapse
|
30
|
Kopec PM, Mikolajczyk K, Jajor E, Perek A, Nowakowska J, Obermeier C, Chawla HS, Korbas M, Bartkowiak-Broda I, Karlowski WM. Local Duplication of TIR-NBS-LRR Gene Marks Clubroot Resistance in Brassica napus cv. Tosca. FRONTIERS IN PLANT SCIENCE 2021; 12:639631. [PMID: 33936130 PMCID: PMC8082685 DOI: 10.3389/fpls.2021.639631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae infection, is a disease of growing importance in cruciferous crops, including oilseed rape (Brassica napus). The affected plants exhibit prominent galling of the roots that impairs their capacity for water and nutrient uptake, which leads to growth retardation, wilting, premature ripening, or death. Due to the scarcity of effective means of protection against the pathogen, breeding of resistant varieties remains a crucial component of disease control measures. The key aspect of the breeding process is the identification of genetic factors associated with variable response to the pathogen exposure. Although numerous clubroot resistance loci have been described in Brassica crops, continuous updates on the sources of resistance are necessary. Many of the resistance genes are pathotype-specific, moreover, resistance breakdowns have been reported. In this study, we characterize the clubroot resistance locus in the winter oilseed rape cultivar "Tosca." In a series of greenhouse experiments, we evaluate the disease severity of P. brassicae-challenged "Tosca"-derived population of doubled haploids, which we genotype with Brassica 60 K array and a selection of SSR/SCAR markers. We then construct a genetic map and narrow down the resistance locus to the 0.4 cM fragment on the A03 chromosome, corresponding to the region previously described as Crr3. Using Oxford Nanopore long-read genome resequencing and RNA-seq we review the composition of the locus and describe a duplication of TIR-NBS-LRR gene. Further, we explore the transcriptomic differences of the local genes between the clubroot resistant and susceptible, inoculated and control DH lines. We conclude that the duplicated TNL gene is a promising candidate for the resistance factor. This study provides valuable resources for clubroot resistance breeding programs and lays a foundation for further functional studies on clubroot resistance.
Collapse
Affiliation(s)
- Piotr M. Kopec
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Poznan, Poland
| | - Katarzyna Mikolajczyk
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Ewa Jajor
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Agnieszka Perek
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Joanna Nowakowska
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Christian Obermeier
- Department of Plant Breeding, Justus-Liebig-Universitaet Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus-Liebig-Universitaet Giessen, Giessen, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marek Korbas
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Iwona Bartkowiak-Broda
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Poznan, Poland
| |
Collapse
|
31
|
Dakouri A, Lamara M, Karim MM, Wang J, Chen Q, Gossen BD, Strelkov SE, Hwang SF, Peng G, Yu F. Identification of resistance loci against new pathotypes of Plasmodiophora brassicae in Brassica napus based on genome-wide association mapping. Sci Rep 2021; 11:6599. [PMID: 33758222 PMCID: PMC7987998 DOI: 10.1038/s41598-021-85836-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/05/2021] [Indexed: 11/11/2022] Open
Abstract
Genetic resistance is a successful strategy for management of clubroot (Plasmodiophora brassicae) of brassica crops, but resistance can break down quickly. Identification of novel sources of resistance is especially important when new pathotypes arise. In the current study, the reaction of 177 accessions of Brassica napus to four new, virulent pathotypes of P. brassicae was assessed. Each accession was genotyped using genotyping by sequencing to identify and map novel sources of clubroot resistance using mixed linear model (MLM) analysis. The majority of accessions were highly susceptible (70–100 DSI), but a few accessions exhibited strong resistance (0–20 DSI) to pathotypes 5X (21 accessions), 3A (8), 2B (7), and 3D (15), based on the Canadian Clubroot Differential system. In total, 301,753 SNPs were mapped to 19 chromosomes. Population structure analysis indicated that the 177 accessions belong to seven major populations. SNPs were associated with resistance to each pathotype using MLM. In total, 13 important SNP loci were identified, with 9 SNPs mapped to the A-genome and 4 to the C-genome. The SNPs were associated with resistance to pathotypes 5X (2 SNPs), 3A (4), 2B (5) and 3D (6). A Blast search of 1.6 Mb upstream and downstream from each SNP identified 13 disease-resistance genes or domains. The distance between a SNP locus and the nearest resistance gene ranged from 0.04 to 0.74 Mb. The resistant lines and SNP markers identified in this study can be used to breed for resistance to the most prevalent new pathotypes of P. brassicae in Canada.
Collapse
Affiliation(s)
- Abdulsalam Dakouri
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Mebarek Lamara
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada.,Institut de Recherche Sur Les Forêts (IRF), Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Md Masud Karim
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Jinghe Wang
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Qilin Chen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Bruce D Gossen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Alberta, Canada
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Alberta, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada.
| |
Collapse
|
32
|
Hasan J, Megha S, Rahman H. Clubroot in Brassica: recent advances in genomics, breeding, and disease management. Genome 2021; 64:735-760. [PMID: 33651640 DOI: 10.1139/gen-2020-0089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clubroot disease, caused by Plasmodiophora brassicae, affects Brassica oilseed and vegetable production worldwide. This review is focused on various aspects of clubroot disease and its management, including understanding the pathogen and resistance in the host plants. Advances in genetics, molecular biology techniques, and omics research have helped to identify several major loci, QTL, and genes from the Brassica genomes involved in the control of clubroot resistance. Transcriptomic studies have helped to extend our understanding of the mechanism of infection by the pathogen and the molecular basis of resistance/susceptibility in the host plants. A comprehensive understanding of the clubroot disease and host resistance would allow developing a better strategy by integrating the genetic resistance with cultural practices to manage this disease from a long-term perspective.
Collapse
Affiliation(s)
- Jakir Hasan
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Swati Megha
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
33
|
Botero-Ramírez A, Laperche A, Guichard S, Jubault M, Gravot A, Strelkov SE, Manzanares-Dauleux MJ. Clubroot Symptoms and Resting Spore Production in a Doubled Haploid Population of Oilseed Rape ( Brassica napus) Are Controlled by Four Main QTLs. FRONTIERS IN PLANT SCIENCE 2020; 11:604527. [PMID: 33391316 PMCID: PMC7773761 DOI: 10.3389/fpls.2020.604527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/20/2020] [Indexed: 06/02/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae Woronin, is one of the most important diseases of oilseed rape (Brassica napus L.). The rapid erosion of monogenic resistance in clubroot-resistant (CR) varieties underscores the need to diversify resistance sources controlling disease severity and traits related to pathogen fitness, such as resting spore production. The genetic control of disease index (DI) and resting spores per plant (RSP) was evaluated in a doubled haploid (DH) population consisting of 114 winter oilseed rape lines, obtained from the cross 'Aviso' × 'Montego,' inoculated with P. brassicae isolate "eH." Linkage analysis allowed the identification of three quantitative trait loci (QTLs) controlling DI (PbBn_di_A02, PbBn_di_A04, and PbBn_di_C03). A significant decrease in DI was observed when combining effects of the three resistance alleles at these QTLs. Only one QTL, PbBn_rsp_C03, was found to control RSP, reducing resting spore production by 40%. PbBn_rsp_C03 partially overlapped with PbBn_di_C03 in a nucleotide-binding leucine-rich repeat (NLR) gene-containing region. Consideration of both DI and RSP in breeding for clubroot resistance is recommended for the long-term management of this disease.
Collapse
Affiliation(s)
- Andrea Botero-Ramírez
- Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anne Laperche
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Solenn Guichard
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Mélanie Jubault
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Antoine Gravot
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Maria J. Manzanares-Dauleux
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| |
Collapse
|