1
|
Umek N, Meznarič M, Šink Ž, Blagotinšek Cokan K, Prosenc Zmrzljak U, Horvat S. In situ spatial transcriptomic analysis of human skeletal muscle using the Xenium platform. Cell Tissue Res 2025; 399:291-302. [PMID: 39786556 DOI: 10.1007/s00441-024-03945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Traditional transcriptomic studies often overlook the complex heterogeneity of skeletal muscle, as they typically isolate RNA from mixed muscle fibre and cell populations, resulting in an averaged transcriptomic profile that obscures fibre type-specific differences. This study assessed the potential of the recently developed Xenium platform for high-resolution spatial transcriptomic analysis of human skeletal muscle histological sections. Human vastus lateralis muscle samples from two individuals were analysed using the Xenium platform and Human Multi-Tissue and Cancer Panel targeting 377 genes complemented by staining of successive sections for Myosin Heavy Chain isoforms to differentiate between type 1 and type 2 muscle fibres. Manual segmentation of muscle fibres allowed accurate comparisons of transcript densities across fibre types and subcellular regions, overcoming limitations in the platform's automated segmentation. The analysis revealed higher transcript density in type 1 fibres, particularly in nuclear and perinuclear areas, and identified 191 out of 377 genes with differential expression between muscle fibres and perimysium. Genes such as PROX1, S100A1, LGR5, ACTA2, and LPL exhibited higher expression in type 1 fibres, whereas PEBP4, CAVIN1, GATM, and PVALB in type 2 fibres. We demonstrated that the Xenium platform is capable of high-resolution spatial in situ transcriptomic analysis of skeletal muscle histological sections. This study demonstrates that, with manual segmentation, the Xenium platform effectively performs fibre type-specific transcriptomic analysis, providing new insights into skeletal muscle biology.
Collapse
Affiliation(s)
- Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
| | - Marija Meznarič
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Žiga Šink
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | | | | | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Haug M, Michael M, Ritter P, Kovbasyuk L, Vazakidou ME, Friedrich O. Levosimendan's Effects on Length-Dependent Activation in Murine Fast-Twitch Skeletal Muscle. Int J Mol Sci 2024; 25:6191. [PMID: 38892380 PMCID: PMC11172453 DOI: 10.3390/ijms25116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Levosimendan's calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). Adding to this debate, we investigated levosimendan's acute impact on fast-twitch skeletal muscle biomechanics in a length-dependent activation study by submersing single muscle fibres in a levosimendan-supplemented solution. We employed our MyoRobot technology to investigate the calcium sensitivity of skinned single muscle fibres alongside their stress-strain response in the presence or absence of levosimendan (100 µM). While control data are in agreement with the theory of length-dependent activation, levosimendan appears to shift the onset of the 'descending limb' of active force generation to longer sarcomere lengths without notably improving myofibrillar calcium sensitivity. Passive stretches in the presence of levosimendan yielded over twice the amount of enlarged restoration stress and Young's modulus in comparison to control single fibres. Both effects have not been described before and may point towards potential off-target sites of levosimendan.
Collapse
Affiliation(s)
- Michael Haug
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Mena Michael
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Paul Ritter
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Larisa Kovbasyuk
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
| | - Maria Eleni Vazakidou
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
- School of Biomedical Sciences, University of New South Wales, Wallace Wurth Building, 18 High St., Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Redox Balance Differentially Affects Biomechanics in Permeabilized Single Muscle Fibres-Active and Passive Force Assessments with the Myorobot. Cells 2022; 11:cells11233715. [PMID: 36496975 PMCID: PMC9740451 DOI: 10.3390/cells11233715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
An oxidizing redox state imposes unique effects on the contractile properties of muscle. Permeabilized fibres show reduced active force generation in the presence of H2O2. However, our knowledge about the muscle fibre's elasticity or flexibility is limited due to shortcomings in assessing the passive stress-strain properties, mostly due to technically limited experimental setups. The MyoRobot is an automated biomechatronics platform that is well-capable of not only investigating calcium responsiveness of active contraction but also features precise stretch actuation to examine the passive stress-strain behaviour. Both were carried out in a consecutive recording sequence on the same fibre for 10 single fibres in total. We denote a significantly diminished maximum calcium-saturated force for fibres exposed to ≥500 µM H2O2, with no marked alteration of the pCa50 value. In contrast to active contraction (e.g., maximum isometric force activation), passive restoration stress (force per area) significantly increases for fibres exposed to an oxidizing environment, as they showed a non-linear stress-strain relationship. Our data support the idea that a highly oxidizing environment promotes non-linear fibre stiffening and confirms that our MyoRobot platform is a suitable tool for investigating redox-related changes in muscle biomechanics.
Collapse
|
4
|
Desmin Knock-Out Cardiomyopathy: A Heart on the Verge of Metabolic Crisis. Int J Mol Sci 2022; 23:ijms231912020. [PMID: 36233322 PMCID: PMC9570457 DOI: 10.3390/ijms231912020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 12/05/2022] Open
Abstract
Desmin mutations cause familial and sporadic cardiomyopathies. In addition to perturbing the contractile apparatus, both desmin deficiency and mutated desmin negatively impact mitochondria. Impaired myocardial metabolism secondary to mitochondrial defects could conceivably exacerbate cardiac contractile dysfunction. We performed metabolic myocardial phenotyping in left ventricular cardiac muscle tissue in desmin knock-out mice. Our analyses revealed decreased mitochondrial number, ultrastructural mitochondrial defects, and impaired mitochondria-related metabolic pathways including fatty acid transport, activation, and catabolism. Glucose transporter 1 and hexokinase-1 expression and hexokinase activity were increased. While mitochondrial creatine kinase expression was reduced, fetal creatine kinase expression was increased. Proteomic analysis revealed reduced expression of proteins involved in electron transport mainly of complexes I and II, oxidative phosphorylation, citrate cycle, beta-oxidation including auxiliary pathways, amino acid catabolism, and redox reactions and oxidative stress. Thus, desmin deficiency elicits a secondary cardiac mitochondriopathy with severely impaired oxidative phosphorylation and fatty and amino acid metabolism. Increased glucose utilization and fetal creatine kinase upregulation likely portray attempts to maintain myocardial energy supply. It may be prudent to avoid medications worsening mitochondrial function and other metabolic stressors. Therapeutic interventions for mitochondriopathies might also improve the metabolic condition in desmin deficient hearts.
Collapse
|