1
|
Lu Z, Gao H, Huang F, Zhao Z, Chen J, Sun F. ENC1 Promotes the Malignant Progression and Metastasis by Suppressing TRIM21 Mediated Vimentin Degradation in Wilms Tumor. Mol Carcinog 2025. [PMID: 40222040 DOI: 10.1002/mc.23918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/15/2025]
Abstract
Ectodermal neural cortex 1 (ENC1) is significantly upregulated in various cancers and shows a positive correlation with poor prognosis and advanced clinical stages, such as colorectal cancer, endometrial cancer and breast cancer. However, the role of ENC1 in Wilms tumor (WT) has not been previously reported. In this study, we conducted several in vitro functional experiments and established xenograft models to confirm the oncogenic potential of ENC1. The binding proteins of ENC1 were identified through co-immunoprecipitation and mass spectrometry to screen the mechanism of malignant progression. Further analysis elucidated the mechanism by which ENC1 promotes tumorigenesis. The results demonstrated that ENC1 was significantly overexpressed in tumor and recurrence samples, with elevated ENC1 expression showing a significant negative correlation with both overall survival and recurrence-free survival of patients. Functionally, the role of ENC1 in tumor oncogenicity was elucidated through the assessment of tumor cell proliferation, migration, and invasion capabilities. Mechanistically, through immunoprecipitation and mass spectrometry, we identified Vimentin as an interacting protein of ENC1. ENC1 competed with the E3 ubiquitin ligase TRIM21 for Vimentin binding, thereby reducing the ubiquitination level of Vimentin and enhancing its protein stability. In conclusion, this study demonstrates that ENC1 functions as a novel oncogenic target for Wilms tumor by disrupting TRIM21-mediated ubiquitination of Vimentin, which presents novel insights for the treatment of Wilms tumor and the development of prognostic markers.
Collapse
Affiliation(s)
- Zhiyi Lu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hongjie Gao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Fan Huang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zuohui Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jiawei Chen
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Fengyin Sun
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Wei Y, Wei S, Lei Z, Zhang Y, Wu J, Huang J, Fu L, Li Z, Huang G, Liang Y, Zheng J. USP4 promotes proliferation and metastasis in human lung adenocarcinoma. Sci Rep 2025; 15:11096. [PMID: 40169699 PMCID: PMC11961685 DOI: 10.1038/s41598-025-89377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/05/2025] [Indexed: 04/03/2025] Open
Abstract
Research the expression of USP4 in lung adenocarcinoma and its correlation with clinicopathological features and prognosis analysis, to explore the invasion and metastasis mechanism of USP4 in lung adenocarcinoma, and to clarify the mechanism of USP4's involvement in the occurrence and development of lung adenocarcinoma. The expressions of USP4, VEGF, MMP2 and Ki67 in lung adenocarcinoma and adjacent tissues of 139 patients with lung adenocarcinoma were detected by immunohistochemical method, and the correlation between expression and clinicopathological features and survival curve were analyzed by statistical method. The expression of USP4 was interfered by LIP-2000 cell transfection technology, and the expression of USP4 and its related factors in protein level was detected by Western Blot, and their correlation was analyzed. After silencing USP4 expression, the effects of USP4 on proliferation, invasion and migration of lung adenocarcinoma cells were detected by cell scratches assay, MTT assay, Transwell assay and tumorigenesis assay in nude mice. The expression of USP4 in lung adenocarcinoma tissues was higher than that in normal adjacent tissues, and the high expression of USP4 was significantly correlated with the differentiation degree of lung adenocarcinoma, clinical stage and pathological grade lymph node metastasis. After silencing USP4 expression, the expression of cyclin apoptosis protein invasion related proteins and phosphorylation factors were affected, and then cell migration and the proliferation ability decreased, the number of invasion and metastasis decreased, and the tumor volume decreased in nude mice. USP4 may play a certain role in the invasion and metastasis of lung adenocarcinoma by regulating the expression of tumor-related factors and affecting the prognosis of patients with lung adenocarcinoma. USP4 can be used as a potential therapeutic target for clinical diagnosis of lung adenocarcinoma and provide a new opportunity for clinical research on lung adenocarcinoma.
Collapse
Affiliation(s)
- Yamin Wei
- Department of Pathology, Affiliated Hospital, Guilin Medical University, Guilin, 541001, China
| | - Shanwang Wei
- Clinical School of Medicine, Qinghai University, Xining, 810000, China
| | - Zhongteng Lei
- Department of Information, Guilin People's Hospital, Guilin, 541001, China
| | - Yan Zhang
- Department of Pathology, Affiliated Hospital, Guilin Medical University, Guilin, 541001, China
| | - Jinxiao Wu
- Department of Pathology, Affiliated Hospital, Guilin Medical University, Guilin, 541001, China
| | - Jinli Huang
- Department of Pathology, Affiliated Hospital, Guilin Medical University, Guilin, 541001, China
| | - Lijuan Fu
- Department of Pathology, Affiliated Hospital, Guilin Medical University, Guilin, 541001, China
| | - Zhimeng Li
- Department of Pathology, Affiliated Hospital, Guilin Medical University, Guilin, 541001, China
| | - Guiying Huang
- Department of Pathology, Affiliated Hospital, Guilin Medical University, Guilin, 541001, China
| | - Yuanna Liang
- Department of Pathology, Affiliated Hospital, Guilin Medical University, Guilin, 541001, China
| | - Jinhua Zheng
- Department of Pathology, Affiliated Hospital, Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
3
|
Pan RG, Zhou J, Wang XW, Cen XK, Zhou YP, Guo YY, Feng XF. Prognostic implication and immunotherapy response prediction of a novel ubiquitination-related gene signature in liver cancer. Aging (Albany NY) 2024; 16:10142-10164. [PMID: 38870259 PMCID: PMC11210240 DOI: 10.18632/aging.205926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/26/2024] [Indexed: 06/15/2024]
Abstract
HCC, also known as hepatocellular carcinoma, is a frequently occurring form of cancer with an unfavorable prognosis. This research constructed a prognostic signature related to ubiquitination and investigated its correlation with the response to immunotherapy in HCC. The Molecular Signatures Database provided a compilation of genes associated with ubiquitination. A gene signature related to ubiquitination was obtained through Cox regression using the Least Absolute Shrinkage and Selection Operator method. The genetic factors CPY26B1, MCM10, SPINK4, and TRIM54 notably impacted the outcomes of HCC. The patients were divided into two groups: one group had a high risk of poor survival while the other had a low risk but a greater chance of controlling HCC progression. Both univariate and multivariate analyses using Cox regression found the risk score to be an independent predictor of HCC prognosis. Gene set enrichment analysis (GSEA) indicated enrichment in cell cycle and cancer-related microRNAs in high-risk groups. The tumor microenvironment (TME), response to immunotherapy, and effectiveness of chemotherapy medications positively correlated with the risk score. In the high-risk group, erlotinib showed higher IC50 values compared to the low-risk group which exhibited higher IC50 values for VX-11e, AKT inhibitor VIII, AT-7519, BMS345541, Bortezomib, CP466722, FMK, and JNK-9L. The results of RT-qPCR revealed that the expression of four UEGs was higher in tumor tissue as compared to normal tissue. Based on the genes that were expressed differently and associated with ubiquitination-related tumor categorization, we have developed a pattern of four genes and a strong nomogram that can predict the prognosis of HCC, which could be useful in identifying and managing HCC.
Collapse
Affiliation(s)
- Re-Guang Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jingyao Zhou
- Department of Pharmacy, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Xiao-Wu Wang
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Whenzhou Medical University, Ruian, Zhejiang 325200, China
| | - Xi-Kai Cen
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yu-Ping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yang-Yang Guo
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xue-Feng Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Sakaji K, Ebrahimiazar S, Harigae Y, Ishibashi K, Sato T, Yoshikawa T, Atsumi GI, Sung CH, Saito M. MAST4 promotes primary ciliary resorption through phosphorylation of Tctex-1. Life Sci Alliance 2023; 6:e202301947. [PMID: 37726137 PMCID: PMC10509483 DOI: 10.26508/lsa.202301947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
The primary cilium undergoes cell cycle-dependent assembly and disassembly. Dysregulated ciliary dynamics are associated with several pathological conditions called ciliopathies. Previous studies showed that the localization of phosphorylated Tctex-1 at Thr94 (T94) at the ciliary base critically regulates ciliary resorption by accelerating actin remodeling and ciliary pocket membrane endocytosis. Here, we show that microtubule-associated serine/threonine kinase family member 4 (MAST4) is localized at the primary cilium. Suppressing MAST4 blocks serum-induced ciliary resorption, and overexpressing MAST4 accelerates ciliary resorption. Tctex-1 binds to the kinase domain of MAST4, in which the R503 and D504 residues are key to MAST4-mediated ciliary resorption. The ciliary resorption and the ciliary base localization of phospho-(T94)Tctex-1 are blocked by the knockdown of MAST4 or the expression of the catalytic-inactive site-directed MAST4 mutants. Moreover, MAST4 is required for Cdc42 activation and Rab5-mediated periciliary membrane endocytosis during ciliary resorption. These results support that MAST4 is a novel kinase that regulates ciliary resorption by modulating the ciliary base localization of phospho-(T94)Tctex-1. MAST4 is a potential new target for treating ciliopathies causally by ciliary resorption defects.
Collapse
Affiliation(s)
- Kensuke Sakaji
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sara Ebrahimiazar
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Harigae
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichi Ishibashi
- Department of Molecular Physiology and Pathology, School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Takeya Sato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gen-Ichi Atsumi
- Department of Molecular Physiology and Pathology, School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Physiology and Pathology, School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
5
|
Shi X, Wu W, Feng Z, Fan P, Shi R, Zhang X. MARCH7-mediated ubiquitination decreases the solubility of ATG14 to inhibit autophagy. Cell Rep 2023; 42:113045. [PMID: 37632749 DOI: 10.1016/j.celrep.2023.113045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023] Open
Abstract
Autophagy is a fundamental biological process critical to all eukaryotic cellular life. Although autophagy has been increasingly studied, how its process is precisely coordinated remains an open question. ATG14 (ATG14L/Barkor) is known to play a crucial role in both autophagosome formation and autophagosome-lysosome fusion. However, how ATG14 is regulated, especially at the post-translation level, is still not clear. Here, we report that MARCH7 (membrane-associated ring-CH-type finger 7), an E3 ubiquitin ligase, inhibits autophagy by ubiquitinating ATG14. MARCH7 significantly promotes K6-, K11-, and K63-linked mixed polyubiquitination on ATG14, triggering the aggregation of ATG14 and reducing its solubility in cells. Functionally, we find that MARCH7 depletion decreases the number of aggresome-like induced structures (ALISs). Mechanistically, we show that ubiquitinated ATG14 has fewer interactions with STX17, leading to the inhibition of autophagy flux. Collectively, our study reveals a mechanism in regulating autophagy and suggests a potential strategy for the treatment of autophagy-related diseases.
Collapse
Affiliation(s)
- Xue Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfeng Wu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510530, China
| | - Zhenhuan Feng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyang Fan
- SanQuan College, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510530, China.
| |
Collapse
|
6
|
Saito M, Otsu W, Miyadera K, Nishimura Y. Recent advances in the understanding of cilia mechanisms and their applications as therapeutic targets. Front Mol Biosci 2023; 10:1232188. [PMID: 37780208 PMCID: PMC10538646 DOI: 10.3389/fmolb.2023.1232188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
The primary cilium is a single immotile microtubule-based organelle that protrudes into the extracellular space. Malformations and dysfunctions of the cilia have been associated with various forms of syndromic and non-syndromic diseases, termed ciliopathies. The primary cilium is therefore gaining attention due to its potential as a therapeutic target. In this review, we examine ciliary receptors, ciliogenesis, and ciliary trafficking as possible therapeutic targets. We first discuss the mechanisms of selective distribution, signal transduction, and physiological roles of ciliary receptors. Next, pathways that regulate ciliogenesis, specifically the Aurora A kinase, mammalian target of rapamycin, and ubiquitin-proteasome pathways are examined as therapeutic targets to regulate ciliogenesis. Then, in the photoreceptors, the mechanism of ciliary trafficking which takes place at the transition zone involving the ciliary membrane proteins is reviewed. Finally, some of the current therapeutic advancements highlighting the role of large animal models of photoreceptor ciliopathy are discussed.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Mie University Research Center for Cilia and Diseases, Tsu, Mie, Japan
| |
Collapse
|
7
|
Chiuso F, Delle Donne R, Giamundo G, Rinaldi L, Borzacchiello D, Moraca F, Intartaglia D, Iannucci R, Senatore E, Lignitto L, Garbi C, Conflitti P, Catalanotti B, Conte I, Feliciello A. Ubiquitylation of BBSome is required for ciliary assembly and signaling. EMBO Rep 2023; 24:e55571. [PMID: 36744302 PMCID: PMC10074118 DOI: 10.15252/embr.202255571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, renal abnormalities, postaxial polydactyly, and developmental defects. Genes mutated in BBS encode for components and regulators of the BBSome, an octameric complex that controls the trafficking of cargos and receptors within the primary cilium. Although both structure and function of the BBSome have been extensively studied, the impact of ubiquitin signaling on BBSome is largely unknown. We identify the E3 ubiquitin ligase PJA2 as a novel resident of the ciliary compartment and regulator of the BBSome. Upon GPCR-cAMP stimulation, PJA2 ubiquitylates BBSome subunits. We demonstrate that ubiquitylation of BBS1 at lysine 143 increases the stability of the BBSome and promotes its binding to BBS3, an Arf-like GTPase protein controlling the targeting of the BBSome to the ciliary membrane. Downregulation of PJA2 or expression of a ubiquitylation-defective BBS1 mutant (BBS1K143R ) affects the trafficking of G-protein-coupled receptors (GPCRs) and Shh-dependent gene transcription. Expression of BBS1K143R in vivo impairs cilium formation, embryonic development, and photoreceptors' morphogenesis, thus recapitulating the BBS phenotype in the medaka fish model.
Collapse
Affiliation(s)
- Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Giuliana Giamundo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Domenica Borzacchiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Federica Moraca
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy.,Net4Science srl, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | - Rosa Iannucci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Luca Lignitto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Paolo Conflitti
- Faculty of Biomedical Sciences, Institute of Computational Science, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
8
|
Wu Y, Guo Y, Wang Q. USP21 accelerates the proliferation and glycolysis of esophageal cancer cells by regulating the STAT3/FOXO1 pathway. Tissue Cell 2022; 79:101916. [DOI: 10.1016/j.tice.2022.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
|
9
|
Sánchez-Bellver L, Férriz-Gordillo A, Carrillo-Pz M, Rabanal L, Garcia-Gonzalo FR, Marfany G. The Deubiquitinating Enzyme USP48 Interacts with the Retinal Degeneration-Associated Proteins UNC119a and ARL3. Int J Mol Sci 2022; 23:ijms232012527. [PMID: 36293380 PMCID: PMC9603860 DOI: 10.3390/ijms232012527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins related to the ubiquitin-proteasome system play an important role during the differentiation and ciliogenesis of photoreceptor cells. Mutations in several genes involved in ubiquitination and proteostasis have been identified as causative of inherited retinal dystrophies (IRDs) and ciliopathies. USP48 is a deubiquitinating enzyme whose role in the retina is still unexplored although previous studies indicate its relevance for neurosensory organs. In this work, we describe that a pool of endogenous USP48 localises to the basal body in retinal cells and provide data that supports the function of USP48 in the photoreceptor cilium. We also demonstrate that USP48 interacts with the IRD-associated proteins ARL3 and UNC119a, and stabilise their protein levels using different mechanisms. Our results suggest that USP48 may act in the regulation/stabilisation of key ciliary proteins for photoreceptor function, in the modulation of intracellular protein transport, and in ciliary trafficking to the photoreceptor outer segment.
Collapse
Affiliation(s)
- Laura Sánchez-Bellver
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andrea Férriz-Gordillo
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Marc Carrillo-Pz
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Laura Rabanal
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Francesc R. Garcia-Gonzalo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), 28029 Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
- DBGen Ocular Genomics, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
10
|
Habeck G, Schweiggert J. Proteolytic control in ciliogenesis: Temporal restriction or early initiation? Bioessays 2022; 44:e2200087. [PMID: 35739619 DOI: 10.1002/bies.202200087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022]
Abstract
Cellular processes are highly dependent on a dynamic proteome that undergoes structural and functional rearrangements to allow swift conversion between different cellular states. By inducing proteasomal degradation of inhibitory or stimulating factors, ubiquitylation is particularly well suited to trigger such transitions. One prominent example is the remodelling of the centrosome upon cell cycle exit, which is required for the formation of primary cilia - antenna-like structures on the surface of most cells that act as integrative hubs for various extracellular signals. Over the last decade, many reports on ubiquitin-related events involved in the regulation of ciliogenesis have emerged. Very often, these processes are considered to be initiated ad hoc, that is, directly before its effect on cilia biogenesis becomes evident. While such a temporal restriction may hold true for the majority of events, there is evidence that some of them are initiated earlier during the cell cycle. Here, we provide an overview of ubiquitin-dependent processes in ciliogenesis and discuss available data that indicate such an early onset of proteolytic regulation within preceding cell cycle stages.
Collapse
Affiliation(s)
- Gregor Habeck
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Jörg Schweiggert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
11
|
Aurora A and AKT Kinase Signaling Associated with Primary Cilia. Cells 2021; 10:cells10123602. [PMID: 34944109 PMCID: PMC8699881 DOI: 10.3390/cells10123602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of kinase signaling is associated with various pathological conditions, including cancer, inflammation, and autoimmunity; consequently, the kinases involved have become major therapeutic targets. While kinase signaling pathways play crucial roles in multiple cellular processes, the precise manner in which their dysregulation contributes to disease is dependent on the context; for example, the cell/tissue type or subcellular localization of the kinase or substrate. Thus, context-selective targeting of dysregulated kinases may serve to increase the therapeutic specificity while reducing off-target adverse effects. Primary cilia are antenna-like structures that extend from the plasma membrane and function by detecting extracellular cues and transducing signals into the cell. Cilia formation and signaling are dynamically regulated through context-dependent mechanisms; as such, dysregulation of primary cilia contributes to disease in a variety of ways. Here, we review the involvement of primary cilia-associated signaling through aurora A and AKT kinases with respect to cancer, obesity, and other ciliopathies.
Collapse
|
12
|
Nishimura Y, Yamakawa D, Uchida K, Shiromizu T, Watanabe M, Inagaki M. Primary cilia and lipid raft dynamics. Open Biol 2021; 11:210130. [PMID: 34428960 PMCID: PMC8385361 DOI: 10.1098/rsob.210130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Primary cilia, antenna-like structures of the plasma membrane, detect various extracellular cues and transduce signals into the cell to regulate a wide range of functions. Lipid rafts, plasma membrane microdomains enriched in cholesterol, sphingolipids and specific proteins, are also signalling hubs involved in a myriad of physiological functions. Although impairment of primary cilia and lipid rafts is associated with various diseases, the relationship between primary cilia and lipid rafts is poorly understood. Here, we review a newly discovered interaction between primary cilia and lipid raft dynamics that occurs during Akt signalling in adipogenesis. We also discuss the relationship between primary cilia and lipid raft-mediated Akt signalling in cancer biology. This review provides a novel perspective on primary cilia in the regulation of lipid raft dynamics.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Daishi Yamakawa
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Katsunori Uchida
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
13
|
Nishimura Y, Inagaki M. [Targeting the ubiquitin system for treatment of cilia-related diseases]. Nihon Yakurigaku Zasshi 2021; 156:4-8. [PMID: 33390480 DOI: 10.1254/fpj.20072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The ubiquitin system regulates a wide variety of cellular functions. Not surprisingly, dysregulation of the ubiquitin system is associated with various disorders. Therefore, drugs that can modulate the functions of the ubiquitin system have been actively developed to treat these disorders. Chemical knockdown of pathogenic proteins using the ubiquitin-proteasome system is also a promising approach. The ubiquitin system regulates the assemble and disassemble of primary cilia through balanced control over the ubiquitination and deubiquitination of ciliary proteins. Primary cilia are antenna-like structures present in many vertebrate cells that sense and transduce extracellular cues to control cellular processes such as proliferation and differentiation. Impairment of primary cilia is associated with many diseases, including cancer and ciliopathy, a group of multisystem developmental disorders. In this review, we focus on the role of the ubiquitin system on cilia-related disorders and discuss the possibility of the ubiquitin system as therapeutic targets for these diseases through regulation of primary cilia formation.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine.,Glocal Center for Advanced Medical Research, Mie University
| | - Masaki Inagaki
- Glocal Center for Advanced Medical Research, Mie University.,Department of Physiology, Mie University Graduate School of Medicine
| |
Collapse
|