1
|
Thomas BJ, Awan SZ, Joshi T, Daniels MA, Porciani D, Burke DH. Anti-EGFR aptamer exhibits direct anti-cancer effects in NSCLC cells harboring EGFR L858R mutations. NPJ Precis Oncol 2024; 8:271. [PMID: 39572699 PMCID: PMC11582725 DOI: 10.1038/s41698-024-00758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) adenocarcinoma (LUAD) is a leading cause of death worldwide. Activating mutations in the tyrosine kinase domain of the oncogene epidermal growth factor receptor (EGFR) are responsible for ~10-50% of all LUAD cases. Although tyrosine kinase inhibitors (TKIs) have been effective in prolonging patient survival and quality of life, acquired resistance and disease progression are inevitable, presenting a clear unmet need for alternative or adjuvant therapeutics. Here we show that an anti-EGFR aptamer (EGFRapt) decreases viability and tumor growth of LUAD cell lines harboring the L858R ± T790M mutation in EGFR. Additionally, we elucidate the mechanism by which EGFRapt exerts these effects by monitoring cellular processes associated with kinase-dependent and kinase-independent mechanisms. Overall, these data establish that EGFRapt has direct anti-cancer activity in mutant EGFR positive LUAD via targetable mechanisms that are independent of existing approaches, and they provide a foundation for further development of nucleic acid-based therapies that target EGFR.
Collapse
Affiliation(s)
- Brian J Thomas
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Sania Z Awan
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Department of Biomedical Informatics, Biostatistics and Medical Epidemiology (BBME), University of Missouri School of Medicine, Columbia, MO, USA
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - David Porciani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Standard BioTools Inc./SomaLogic Inc., Boulder, CO, USA.
| | - Donald H Burke
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
2
|
Gamboa J, Lourenço P, Cruz C, Gallardo E. Aptamers for the Delivery of Plant-Based Compounds: A Review. Pharmaceutics 2024; 16:541. [PMID: 38675202 PMCID: PMC11053555 DOI: 10.3390/pharmaceutics16040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Natural compounds have a high potential for the treatment of various conditions, including infections, inflammatory diseases, and cancer. However, they usually present poor pharmacokinetics, low specificity, and even toxicity, which limits their use. Therefore, targeted drug delivery systems, typically composed of a carrier and a targeting ligand, can enhance natural product selectivity and effectiveness. Notably, aptamers-short RNA or single-stranded DNA molecules-have gained attention as promising ligands in targeted drug delivery since they are simple to synthesize and modify, and they present high tissue permeability, stability, and a wide array of available targets. The combination of natural products, namely plant-based compounds, with a drug delivery system utilizing aptamers as targeting agents represents an emerging strategy that has the potential to broaden its applications. This review discusses the potential of aptamers as targeting agents in the delivery of natural compounds, as well as new trends and developments in their utilization in the field of medicine.
Collapse
Affiliation(s)
- Joana Gamboa
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Pedro Lourenço
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Carla Cruz
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| |
Collapse
|
3
|
Danquah MK. Editorial to the IJMS Special Issue "Aptamer-Mediated Cancer Theranostics". Int J Mol Sci 2023; 24:ijms24087253. [PMID: 37108416 PMCID: PMC10138950 DOI: 10.3390/ijms24087253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Aptamers have emerged as a new generation of bioaffinity probes with enhanced target binding specificity and selectivity [...].
Collapse
Affiliation(s)
- Michael K Danquah
- Department of Chemical Engineering, University of Tennessee at Chattanooga, 615 McCallie Ave., Chattanooga, TN 37403, USA
| |
Collapse
|
4
|
Zhao X, Wu X, Wang H, Lai S, Wang J. Targeted therapy for cisplatin-resistant lung cancer via aptamer-guided nano-zinc carriers containing USP14 siRNA. MedComm (Beijing) 2023; 4:e237. [PMID: 37035133 PMCID: PMC10077057 DOI: 10.1002/mco2.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 04/11/2023] Open
Abstract
Cisplatin (DDP) is a common therapeutic option for non-small cell lung carcinoma (NSCLC). However, some patients fail to respond to the DDP chemotherapy. Therefore, identifying novel biomarkers to improve the diagnosis and treatment of NSCLC is important. Ubiquitin-specific protease (USP14) is involved in various pathological conditions including cancer; however, the role of USP14 in NSCLC remains elusive. The SELEX technology was used to identify aptamers that specifically recognize DDP-resistant lung cancer cells and couple them with nano-zinc (zinc hydroxide, Zn(OH)2) carriers. USP14 levels were higher in DDP-resistant lung cancer compared to DDP-sensitive lung cancer. The survival rate of lung cancer patients with increased USP14 expression was significantly lower than the survival rate of patients with low USP14 expression. Silencing USP14 increased the tumor antagonistic action of DDP in A549 cisplatin-resistant (A549/DDP) cells, while USP14 overexpression decreased the antagonist effects. Aptamer-targeted nano-zinc carriers were loaded with USP14 siRNA to target DDP-resistant lung cancer cells. Aptamer-targeted nano-zinc carriers containing USP14 siRNA increased the antitumor effects of DDP in A549/DDP cells and mice bearing A549/DDP cells. These results indicate that aptamer-guided nano-zinc carriers may be a potent carrier for the precise treatment of drug-resistant tumors.
Collapse
Affiliation(s)
- Xinmin Zhao
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xianghua Wu
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Huijie Wang
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Songtao Lai
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Shanghai Key Laboratory of Radiation OncologyShanghaiChina
| | - Jialei Wang
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
5
|
Yin X, He Z, Ge W, Zhao Z. Application of aptamer functionalized nanomaterials in targeting therapeutics of typical tumors. Front Bioeng Biotechnol 2023; 11:1092901. [PMID: 36873354 PMCID: PMC9978196 DOI: 10.3389/fbioe.2023.1092901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is a major cause of human death all over the world. Traditional cancer treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and hormone therapy. Although these conventional treatment methods improve the overall survival rate, there are some problems, such as easy recurrence, poor treatment, and great side effects. Targeted therapy of tumors is a hot research topic at present. Nanomaterials are essential carriers of targeted drug delivery, and nucleic acid aptamers have become one of the most important targets for targeted tumor therapy because of their high stability, high affinity, and high selectivity. At present, aptamer-functionalized nanomaterials (AFNs), which combine the unique selective recognition characteristics of aptamers with the high-loading performance of nanomaterials, have been widely studied in the field of targeted tumor therapy. Based on the reported application of AFNs in the biomedical field, we introduce the characteristics of aptamer and nanomaterials, and the advantages of AFNs first. Then introduce the conventional treatment methods for glioma, oral cancer, lung cancer, breast cancer, liver cancer, colon cancer, pancreatic cancer, ovarian cancer, and prostate cancer, and the application of AFNs in targeted therapy of these tumors. Finally, we discuss the progress and challenges of AFNs in this field.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China
| | - Zhenqiang He
- Clinical Medical College of Hebei University, Baoding, China.,Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Weiying Ge
- Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China.,Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Cheng H, Wang SJ, Li Z, Ma Y, Song YR. ING2-WTAP is a potential therapeutic target in non-small cell lung cancer. Biochem Biophys Res Commun 2022; 605:31-38. [DOI: 10.1016/j.bbrc.2022.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
|
7
|
Gong J, Shen Y, Jiang F, Wang Y, Chu L, Sun J, Shen P, Chen M. MicroRNA‑20a promotes non‑small cell lung cancer proliferation by upregulating PD‑L1 by targeting PTEN. Oncol Lett 2022; 23:148. [PMID: 35350588 PMCID: PMC8941509 DOI: 10.3892/ol.2022.13269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains one of the most common malignant tumors worldwide. The aim of the present study was to investigate the possibility of microRNA-20a (miR-20a) as a biomarker and therapeutic target for the diagnosis and treatment of NSCLC. Bioinformatics prediction, together with functional validation, confirmed miR-20a bound to programmed death ligand-1 (PD-L1) 3′-untranslated region to upregulate PD-L1 expression. Both miR-20a and PD-L1 could promote the proliferation of NSCLC cells. The expression level of PD-L1 was controlled by PTEN; however, further upstream regulation of PD-L1 expression was largely unknown. The present study showed that miR-20a could not restore the inhibition of PD-L1 expression levels by PTEN. Knockdown of PTEN expression upregulated the expression level of PD-L1 and promoted the proliferation of NSCLC cells. PTEN negatively regulated the Wnt/β-catenin signaling pathway by inhibiting β-catenin and Cyclin D1. Interestingly, PTEN could reverse miR-20a-mediated proliferation of NSCLC cells and the inhibitory effect was similar to that of XAV-939. miR-20a promotes the proliferation of NSCLC cells by inhibiting the expression level of PTEN and upregulating the expression level of PD-L1. It is suggested that miR-20a could be used as a biomarker and therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jiaomei Gong
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Yong Shen
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Fuguo Jiang
- Department of Clinical Laboratory, Jiaozuo People's Hospital, Jiaozuo, Henan 454000, P.R. China
| | - Yan Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Lulu Chu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Jinqi Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Pengxiao Shen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Maocai Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| |
Collapse
|
8
|
|