1
|
Liu H, Huang Z, Wang X, Hu K, Jiang Q, Chen F, Ma Y, Cheng Z, Pan Y, Weng Y. Regreening mechanisms in cucumber: insights from a CsSIG2 mutation affecting chloroplast development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:82. [PMID: 40121605 DOI: 10.1007/s00122-025-04854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
KEY MESSAGE CsSIG2 is essential for cucumber chloroplast development, and mutations in CsSIG2 reveal mechanisms that restore chloroplast functionality and drive the regreening phenotype in the mutant. Chloroplast development and leaf color are essential traits that significantly influence plant photosynthesis and overall vigor. This study investigates a natural mutation in the cucumber that leads to a virescent leaf-color (Csvl-6) phenotype characterized by an initial yellow color in cotyledons and young leaves, which gradually transition to green as the plant matures. We utilized bulked segregant analysis and genetic linkage mapping to locate the best candidate gene sigma factor 2 (CsSIG2) on chromosome 6, identifying a single nonsynonymous SNP resulting in an arginine to glycine substitution in the CsSIG2 protein. Comparative transcriptome analysis highlighted that this mutation disrupts early chloroplast biogenesis and delays chlorophyll accumulation, but the chloroplasts can recover, leading to greening during later stages of leaf development. Our findings reveal that the recovery phenomenon involves upregulation of chloroplast-encoded genes responsible for thylakoid membrane formation and photosystem function, alongside altered expression of transcription factors linked to chlorophyll metabolism. This study elucidates the genetic and molecular basis of chloroplast development in cucumber, providing valuable insights into the mechanisms underlying leaf greening, which could inform future breeding efforts focused on manipulating leaf color traits for enhanced crop performance.
Collapse
Affiliation(s)
- Hanqiang Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Zeqiang Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinyue Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kaihong Hu
- Department of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Qinqin Jiang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feifan Chen
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Yuxuan Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yupeng Pan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yiqun Weng
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Zhang C, Li W, Wu Y, Li S, Hua B, Sun H. Chloroplast Functionality at the Interface of Growth, Defense, and Genetic Innovation: A Multi-Omics and Technological Perspective. PLANTS (BASEL, SWITZERLAND) 2025; 14:978. [PMID: 40265935 PMCID: PMC11944437 DOI: 10.3390/plants14060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Chloroplasts are important in plant growth, development, and defense mechanisms, making them central to addressing global agricultural challenges. This review explores the multi-faceted contributions of chloroplasts, including photosynthesis, hormone biosynthesis, and stress signaling, which orchestrate the trade-off between growth and defense. Advancements in chloroplast genomics, transcription, translation, and proteomics have deepened our understanding of their regulatory functions and interactions with nuclear-encoded proteins. Case studies have demonstrated the potential of chloroplast-targeted strategies, such as the expression of elongation factor EF-2 for heat tolerance and flavodiiron proteins for drought resilience, to enhance crop productivity and stress adaptation. Future research directions should focus on the need for integrating omics data with nanotechnology and synthetic biology to develop sustainable and resilient agricultural systems. This review uniquely integrates recent advancements in chloroplast genomics, transcriptional regulation, and synthetic biology to present a holistic perspective on optimizing plant growth and stress tolerance. We emphasize the role of chloroplast-driven trade-off in balancing growth and immunity, leveraging omics technologies and emerging biotechnological innovations. This comprehensive approach offers new insights into sustainable agricultural practices, making it a significant contribution to the field.
Collapse
Affiliation(s)
- Chunhua Zhang
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China; (C.Z.); (W.L.); (Y.W.); (S.L.); (B.H.)
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Wenting Li
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China; (C.Z.); (W.L.); (Y.W.); (S.L.); (B.H.)
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Yahan Wu
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China; (C.Z.); (W.L.); (Y.W.); (S.L.); (B.H.)
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Shengli Li
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China; (C.Z.); (W.L.); (Y.W.); (S.L.); (B.H.)
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Bao Hua
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China; (C.Z.); (W.L.); (Y.W.); (S.L.); (B.H.)
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Haizhou Sun
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China; (C.Z.); (W.L.); (Y.W.); (S.L.); (B.H.)
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| |
Collapse
|
3
|
Chao C, Gong S, Xie Y. The Performance of a Multi-Stage Surface Flow Constructed Wetland for the Treatment of Aquaculture Wastewater and Changes in Epiphytic Biofilm Formation. Microorganisms 2025; 13:494. [PMID: 40142387 PMCID: PMC11944938 DOI: 10.3390/microorganisms13030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Constructed wetlands play a critical role in mitigating aquaculture wastewater pollution. However, the comprehensive treatment performance of aquatic plants and microorganisms under various water treatment processes remains insufficiently understood. Here, a multi-stage surface flow constructed wetland (SFCW) comprising four different aquatic plant species, along with aeration and biofiltration membrane technologies, was investigated to explore the combined effects of aquatic plants and epiphytic biofilms on wastewater removal efficiency across different vegetation periods and treatment processes. The results demonstrated that the total removal efficiency consistently exceeded 60% in both vegetation periods, effectively intercepting a range of pollutants present in aquaculture wastewater. Changes in the vegetation period influenced the performance of the SFCW, with the system's ability to treat total nitrogen becoming more stable over time. The removal efficiency of the treatment pond planted with submerged plants was highest in July, while the pond planted with emergent plants showed an increased removal rate in November. The aeration pond played a significant role in enhancing dissolved oxygen levels, thereby improving phosphorus removal in July and nitrogen removal in November. Additionally, the α-diversity of epiphytic bacteria in the aeration and biofiltration ponds was significantly higher compared to other ponds. In terms of bacterial composition, the abundance of Firmicutes was notably higher in July, whereas Nitrospirota and Acidobacteriota exhibited a significant increase in November. Furthermore, the functional genes associated with sulfur metabolism, nitrogen fixation, and oxidative phosphorylation displayed significant temporal variations in the aeration pond, highlighting that both growth period changes and treatment processes influence the expression of functional genes within biofilms. Our findings suggest that the integration of water treatment processes in SFCWs enhances the synergistic effects between aquatic plants and microorganisms, helping to mitigate the adverse impacts of vegetation period changes and ensuring stable and efficient wastewater treatment performance.
Collapse
Affiliation(s)
| | | | - Yonghong Xie
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.C.); (S.G.)
| |
Collapse
|
4
|
Cauz-Santos LA, da Costa ZP, Sader MA, van den Berg C, Vieira MLC. Chloroplast genomic insights into adaptive evolution and rapid radiation in the genus Passiflora (Passifloraceae). BMC PLANT BIOLOGY 2025; 25:192. [PMID: 39948451 PMCID: PMC11823247 DOI: 10.1186/s12870-025-06210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Chloroplasts are essential organelles in plants and eukaryotic algae, responsible for photosynthesis, fatty acid synthesis, amino acid production, and stress responses. The genus Passiflora, known for its species diversity and dynamic chloroplast (cp) genome evolution, serves as an excellent model for studying structural variations. This study investigates evolutionary relationships within Passiflora by sequencing 11 new chloroplast genomes, assessing selective pressures on cp genes, and comparing plastid and nuclear phylogenies. Passiflora cp genomes showed significant variations in size, gene content, and structure, ranging from 132,736 to 163,292 base pairs, especially in Decaloba. Structural rearrangements and species-specific repeat patterns were identified. Selective pressure tests revealed significant adaptive evolution in certain lineages, with several genes, including clpP and petL, under positive selection. Phylogenetic analyses confirmed the monophyly of subgenera Astrophea, Passiflora, and Decaloba, while Deidamioides appeared polyphyletic. Nuclear phylogenetic analysis based on 35S rDNA sequences supported the monophyly of Astrophea but showed inconsistencies within subgenus Passiflora compared to cp genome data. This study highlights the evolutionary complexity of Passiflora cp genomes, demonstrating significant structural variations and adaptive evolution. The findings underscore the effectiveness of plastid phylogenomics in resolving phylogenetic relationships and provide insights into adaptive mechanisms shaping cp genome diversity in angiosperms.
Collapse
Affiliation(s)
| | - Zirlane Portugal da Costa
- Departmento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Mariela Analía Sader
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cássio van den Berg
- Departmento de Ciencias Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| | - Maria Lucia Carneiro Vieira
- Departmento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
5
|
Hou X, Hu X, Mu L, Wei Y. Heatwaves increase the polystyrene nanoplastic-induced toxicity to marine diatoms through interfacial interaction regulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136703. [PMID: 39615393 DOI: 10.1016/j.jhazmat.2024.136703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 01/28/2025]
Abstract
Marine heatwaves, prolonged high-temperature extreme events in the ocean, have increased worldwide in recent decades. Plastic pollution is widespread in the ocean, and the continuous weathering of plastics leads to a substantial release of nanoplastics (NPs). However, the interactive impacts and in-depth mechanisms of heatwaves and NPs on diatoms are largely unknown. Here, we show that a heatwave intensity of 4 °C amplified the toxicity of polystyrene NPs to the globally important diatom Chaetoceros gracilis (C. gracilis), with reductions of 5.62 % and 9.46 % in growth rate and photosynthesis, respectively. Notably, NPs significantly inhibited the cell-specific C assimilation rate by 18.28 % under heatwave conditions. The enhanced NP-induced toxicity to C. gracilis was attributed to decreased mechanical strength and increased NP adsorption under heatwave conditions, which increased membrane damage and oxidative stress. Transcriptomic analysis demonstrated that NPs disturbed redox homeostasis and caused mechanical stress to C. gracilis under heatwave conditions. Moreover, NP treatment downregulated genes (psbA and rbcL) encoding photosynthesis core proteins and the pivotal carbon-fixing enzyme RubisCo under heatwave conditions, resulting in decreased growth and C fixation rates. These findings demonstrate that heatwaves render C. gracilis susceptible to NPs and emphasize the reduced primary productivity caused by NPs under global warming.
Collapse
Affiliation(s)
- Xuan Hou
- Carbon Neutrality Interdisciplinary Science Centre/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Xiangang Hu
- Carbon Neutrality Interdisciplinary Science Centre/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China.
| | - Yuanyuan Wei
- Carbon Neutrality Interdisciplinary Science Centre/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Hu L, Wu Q, Wu C, Zhang C, Wu Z, Shi M, Zhang M, Duan S, Wang HB, Jin HL. Light signaling-dependent regulation of plastid RNA processing in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:375-390. [PMID: 39352303 DOI: 10.1111/jipb.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/02/2024] [Indexed: 02/13/2025]
Abstract
Light is a vital environmental signal that regulates the expression of plastid genes. Plastids are crucial organelles that respond to light, but the effects of light on plastid RNA processing following transcription remain unclear. In this study, we systematically examined the influence of light exposure on plastid RNA processing, focusing on RNA splicing and RNA editing. We demonstrated that light promotes the splicing of transcripts from the plastid genes rps12, ndhA, atpF, petB, and rpl2. Additionally, light increased the editing rate of the accD transcript at nucleotide 794 (accD-794) and the ndhF transcript at nucleotide 290 (ndhF-290), while decreasing the editing rate of the clpP transcript at nucleotide 559 (clpP-559). We have identified key regulators of signaling pathways, such as CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), ELONGATED HYPOCOTYL 5 (HY5), and PHYTOCHROME-INTERACTING FACTORs (PIFs), as important players in the regulation of plastid RNA splicing and editing. Notably, COP1 was required for GENOMES UNCOUPLED1 (GUN1)-dependent repression of clpP-559 editing in the light. We showed that HY5 and PIF1 bind to the promoters of nuclear genes encoding plastid-localized RNA processing factors in a light-dependent manner. This study provides insight into the mechanisms underlying light-mediated post-transcriptional regulation of plastid gene expression.
Collapse
Affiliation(s)
- Lili Hu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qian Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunyu Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunmei Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziying Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Meihui Shi
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Man Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou, 510006, China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510375, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
7
|
Wang M, Zhang S, Li R, Zhao Q. Unraveling the specialized metabolic pathways in medicinal plant genomes: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1459533. [PMID: 39777086 PMCID: PMC11703845 DOI: 10.3389/fpls.2024.1459533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Medicinal plants are important sources of bioactive specialized metabolites with significant therapeutic potential. Advances in multi-omics have accelerated the understanding of specialized metabolite biosynthesis and regulation. Genomics, transcriptomics, proteomics, and metabolomics have each contributed new insights into biosynthetic gene clusters (BGCs), metabolic pathways, and stress responses. However, single-omics approaches often fail to fully address these complex processes. Integrated multi-omics provides a holistic perspective on key regulatory networks. High-throughput sequencing and emerging technologies like single-cell and spatial omics have deepened our understanding of cell-specific and spatially resolved biosynthetic dynamics. Despite these advancements, challenges remain in managing large datasets, standardizing protocols, accounting for the dynamic nature of specialized metabolism, and effectively applying synthetic biology for sustainable specialized metabolite production. This review highlights recent progress in omics-based research on medicinal plants, discusses available bioinformatics tools, and explores future research trends aimed at leveraging integrated multi-omics to improve the medicinal quality and sustainable utilization of plant resources.
Collapse
Affiliation(s)
- Mingcheng Wang
- Institute for Advanced Study, Chengdu University, Chengdu, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
| | - Shuqiao Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
8
|
Li JW, Li RY, Chen YM, Wu YH, Zou LH, Tang SL, Zhai JW. Comprehensive characterization and phylogenetic analysis of the complete plastomes of two ant-orchids, Caularthron bicornutum and Myrmecophila thomsoniana. BMC PLANT BIOLOGY 2024; 24:1146. [PMID: 39609739 PMCID: PMC11605855 DOI: 10.1186/s12870-024-05827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Myrmecophytes, characterized by specialized structures like hollow stems that facilitate mutualistic relationships with ants, serve as an important system for studying ant-plant interactions and the adaptation mechanisms. Caularthron and Myrmecophila are exemplary myrmecophytes within Orchidaceae. Previous studies suggested a genetic relationship between these two genera, placing them within Laeliinae (Epidendreae), yet the precise phylogenetic positioning remained uncertain. The absence of available plastome resources has hindered investigations into plastome evolution and phylogeny. RESULTS In this study, we sequenced and assembled the complete plastomes of Caularthron bicornutum and Myrmecophila thomsoniana to elucidate their plastome characteristics and phylogenetic relationships. The determined plastome sizes were 150,557 bp for C. bicornutum and 156,905 bp for M. thomsoniana, with GC contents of 37.3% and 37.1%, respectively. Notably, M. thomsoniana exhibited a distinctive IR expansion and SSC contraction, with the SSC region measuring only 4532 bp and containing five genes (ccsA, ndhD, rpl32, psaC, and trnL-UAG), a unique feature observed for the first time in Epidendreae. Comparative analyses with species from the related genus Epidendrum revealed that C. bicornutum plastome exhibited conserved genome size, GC content, gene content, and gene order. A total of 32 and 33 long sequence repeats, 50 and 40 tandem repeats, and 99 and 109 SSRs were identified in the plastomes of C. bicornutum and M. thomsoniana, respectively. The RSCU analysis demonstrated a consistent pattern in both plastomes, with 29 out of 30 codons with RSCU values greater than 1 featuring A/U at the third codon position. Leucine was the most prevalent amino acid, while Cysteine was the least common. Four potential DNA barcoding regions with Pi values exceeding 0.07, namely ycf1, ccsA-psaC, petN-psbM, and accD-psaI, were identified for subsequent phylogenetic reconstructions within Laeliinae. Phylogenetic analysis underscored the close relationships among Caularthron, Epidendrum, and Myrmecophila. CONCLUSIONS This study represents the first comprehensive analysis of the plastome characteristics of Caularthron bicornutum and Myrmecophila thomsoniana. Through our characterization and phylogenetic analyses, we unveiled the unique IR expansion/SSC contraction and further elucidated their phylogenetic positions. Our research contributes significant data and insights into the dynamic evolution of ant-orchid plastomes and the phylogeny of the Laeliinae.
Collapse
Affiliation(s)
- Jin-Wei Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ru-Yi Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu-Ming Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu-Han Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Shu-Ling Tang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Zhangzhou Institute of Technology, Zhangzhou, 363000, China.
| | - Jun-Wen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Zhang L, Jing P, Geng B, Zhang J, Shi J, Liang D, Yang Y, Qu Y, Huang J. Effect of Chloroplast ATP Synthase on Reactive Oxygen Species Metabolism in Cotton. Int J Mol Sci 2024; 25:12707. [PMID: 39684418 DOI: 10.3390/ijms252312707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Abnormal programmed cell death in the tapetum is induced by reactive oxygen species (ROS), which are the main factors leading to cytoplasmic male sterility (CMS). These abnormalities are caused by genetic interactions between nuclear and cytoplasmic genes. To explore the role of chloroplast genes in ROS metabolism, next-generation and single-molecule real-time sequencing of the chloroplast genome were performed in the cotton CMS line Jin A (Jin A-CMS). Our results showed that the chloroplast genome is 160,042 bp in length and consists of 131 genes, including 112 functional genes. An analysis of the functional annotation and sequence comparison with the Gossypium hirsutum chloroplast genome as a reference revealed that 29 genes in Jin A-CMS have single-nucleotide polymorphisms, including subunits of ATP synthase, NAD(P)H-quinone redox reductase, and photosystem complexes. Compared to the Jin B maintainer, the anthers of Jin A-CMS at the microspore abortion stage have significantly lower expression of atpB, atpE, and atpF. The relative expression of these genes is significantly higher in the three-line F1 hybrids compared to Jin A-CMS. The ROS levels in the leaves increased in response to the silencing of atpE and atpF in cotton plants. In summary, the results of our study show that the ATP synthase subunit genes atpE and atpF are closely linked with ROS metabolism. These results provide basic information for the functional analysis of ATP synthase in cotton.
Collapse
Affiliation(s)
- Li Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Panpan Jing
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Biao Geng
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Jinlong Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Jinjiang Shi
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Dong Liang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yujie Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yunfang Qu
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Jinling Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
10
|
Sun M, Zhu Z, Li R. The Complete Chloroplast Genome of Meconopsis simplicifolia and Its Genetic Comparison to Other Meconopsis Species. Genes (Basel) 2024; 15:1301. [PMID: 39457425 PMCID: PMC11507337 DOI: 10.3390/genes15101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Chloroplasts, due to their high conservation and lack of recombination, serve as important genetic resources for the classification and evolutionary analysis of closely related species that are difficult to distinguish based on their morphological features. Meconopsis simplicifolia (M. simplicifolia), an endangered herb within the Meconopsis genus, has demonstrated therapeutic potential in treating various diseases. However, the highly polymorphic morphology of this species poses a challenge for accurate identification. Methods: In this study, the complete chloroplast genome of M. simplicifolia was sequenced and assembled using Illumina sequencing technology. Simple sequence repeats (SSRs) and repetitive sequences were characterized. In addition, a comparative analysis was conducted with the chloroplast genomes of six other Meconopsis species. Results: The chloroplast genome of M. simplicifolia has a quadripartite circular structure with a total length of 152,772 bp. It consists of a large single-copy region of 83,824 bp and a small single-copy region of 17,646 bp, separated by a pair of inverted repeat sequences (IRa and IRb, 25,651 bp). The genome contains 131 genes, 33 SSRs, and 27 long repetitive sequences. Comparative analysis with six other chloroplast genomes of Meconopsis revealed that M. simplicifolia is closely related to M. betonicifolia and that the rpl2 (ribosomal protein L2) gene in the IRb region has been deleted. This deletion is of significant importance for future taxonomic studies of M. simplicifolia. Conclusions: This study provides a valuable reference for the identification of M. simplicifolia and contributes to a deeper understanding of the phylogeny and evolution of the Meconopsis genus.
Collapse
Affiliation(s)
- Min Sun
- Institute of Advanced Study, Chengdu University, Chengdu 610106, China;
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610000, China;
| | - Zhidan Zhu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610000, China;
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610000, China;
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
11
|
Sertse D, Fetene A, Leon J, You FM, Cloutier S, McCartney CA. Tracing post-domestication historical events and screening pre-breeding germplasm from large gene pools in wheat in the absence of phenotype data. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:237. [PMID: 39340687 DOI: 10.1007/s00122-024-04738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Wheat, particularly common wheat (Triticum aestivum L.), is a major crop accounting for 25% of the world cereal production and thriving in diverse ecogeographic regions. Its adaptation to diverse environments arises from its three distinct genomes adapted to different environments and post-domestication anthropogenic interventions. In search of key genomic regions revealing historic events and breeding significance to common wheat, we performed genome scan and genome-environment association (GEA) analyses using high-marker density genotype datasets. Whole-genome scans revealed highly differentiated regions on chromosomes 2A, 3B, and 4A. In-depth analyses corroborated our previous prediction of the 4A differentiated region signifying the separation between Spelt/Macha and other wheat types. Individual chromosome scans captured key introgressions, including one from T. timopheevii and one from Thinopyrum ponticum on 2B and 3D, respectively, as well as known genes such as Vrn-A1 on 5A. GEA highlighted loci linked to latitude-induced environmental variations, influencing traits such as photoperiodism and responses to abiotic stress. Variation at the Vrn-A1 locus on 5A assigned accessions to two haplotypes (6% and 94%). Further analysis on Vrn-A1 coding gene revealed four subgroups of the major haplotype, while the minor haplotype remained undifferentiated. Analyses at differentiated loci mostly dichotomized the population, illustrating the possibility of isolating pre-breeding materials with desirable traits from large gene pools in the absence of phenotype data. Given the current availability of broad genetic data, the genome-scan-GEA hybrid can be an efficient and cost-effective approach for pinpointing environmentally resilient pre-breeding germplasm from vast gene pools, including gene banks regardless of trait characterization.
Collapse
Affiliation(s)
- Demissew Sertse
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| | - Aramde Fetene
- Department of Environmental Planning and Landscape Design, EiABC, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jen Leon
- Department of Plant Breeding, University of Bonn, Bonn, Germany
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Curt A McCartney
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
12
|
Mehmood F, Li M, Bertolli A, Prosser F, Varotto C. Comparative Plastomics of Plantains ( Plantago, Plantaginaceae) as a Tool for the Development of Species-Specific DNA Barcodes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2691. [PMID: 39409561 PMCID: PMC11478842 DOI: 10.3390/plants13192691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024]
Abstract
Plantago (plantains, Plantaginaceae) is a cosmopolitan genus including over 250 species used as functional foods, forage, and traditional medicine. Among them, Plantago lanceolata is commonly used as an ingredient of herbal products, but the close similarity to other Plantago species can cause misidentifications with potentially serious consequences for product safety/quality. To test the possibility of developing species-specific barcoding markers, we de novo assembled plastome sequences of individuals of Plantago argentea, Plantago atrata, P. lanceolata, and Plantago maritima. These genomes were characterized in comparison with both previously sequenced conspecific accessions and other publicly available plastomes, thus providing an assessment of both intraspecific and interspecific genetic variation in Plantago plastomes. Additionally, molecular evolutionary analyses indicated that eleven protein-coding genes involved in different plastid functions in Plantago plastomes underwent positive selection, suggesting they might have contributed to enhancing species' adaptation during the evolutionary history of Plantago. While the most variable mutational hotspots in Plantago plastomes were not suitable for the development of species-specific molecular markers, species-specific polymorphisms could discriminate P. lanceolata from its closest relatives. Taken together, these results highlight the potential of plastome sequencing for the development of molecular markers to improve the identification of species with relevance in herbal products.
Collapse
Affiliation(s)
- Furrukh Mehmood
- Ecogenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mingai Li
- Ecogenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | | | | | - Claudio Varotto
- Ecogenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
13
|
Frank S, Saeid Nia M, Schäfer A, Desel C, Mulisch M, Voigt U, Nowara D, Tandron Moya YA, von Wiren N, Bilger W, Hensel G, Krupinska K. Over-accumulation of chloroplast-nucleus located WHIRLY1 in barley leads to a decrease in growth and an enhanced stress resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1210-1225. [PMID: 38843114 DOI: 10.1111/tpj.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 08/15/2024]
Abstract
WHIRLY1 is a chloroplast-nucleus located DNA/RNA-binding protein with functions in development and stress tolerance. By overexpression of HvWHIRLY1 in barley, one line with a 10-fold and two lines with a 50-fold accumulation of the protein were obtained. In these lines, the relative abundance of the nuclear form exceeded that of the chloroplast form. Growth of the plants was shown to be compromised in a WHIRLY1 abundance-dependent manner. Over-accumulation of WHIRLY1 in chloroplasts had neither an evident impact on nucleoid morphology nor on the composition of the photosynthetic apparatus. Nevertheless, oeW1 plants were found to be compromised in the light reactions of photosynthesis as well as in carbon fixation. The reduction in growth and photosynthesis was shown to be accompanied by a decrease in the levels of cytokinins and an increase in the level of jasmonic acid. Gene expression analyses revealed that in nonstress conditions the oeW1 plants had enhanced levels of pathogen response (PR) gene expression indicating activation of constitutive defense. During growth in continuous light of high irradiance PR gene expression increased indicating that under stress conditions oeW1 are capable to further enhance defense.
Collapse
Affiliation(s)
- Susann Frank
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Monireh Saeid Nia
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Anke Schäfer
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Christine Desel
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Maria Mulisch
- Central Microscopy of the Center of Biology, CAU, Kiel, Germany
| | - Ulrike Voigt
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Daniela Nowara
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | | | - Nicolaus von Wiren
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Wolfgang Bilger
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| |
Collapse
|
14
|
Zhang J, Liu Y, Zhou Z, Yang L, Xue Z, Li Q, Cai B. Genome-Wide Characterization of Fructose 1,6-Bisphosphate Aldolase Genes and Expression Profile Reveals Their Regulatory Role in Abiotic Stress in Cucumber. Int J Mol Sci 2024; 25:7687. [PMID: 39062929 PMCID: PMC11276831 DOI: 10.3390/ijms25147687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The fructose-1,6-bisphosphate aldolase (FBA) gene family exists in higher plants, with the genes of this family playing significant roles in plant growth and development, as well as response to abiotic stresses. However, systematic reports on the FBA gene family and its functions in cucumber are lacking. In this study, we identified five cucumber FBA genes, named CsFBA1-5, that are distributed randomly across chromosomes. Phylogenetic analyses involving these cucumber FBAs, alongside eight Arabidopsis FBA proteins and eight tomato FBA proteins, were conducted to assess their homology. The CsFBAs were grouped into two clades. We also analyzed the physicochemical properties, motif composition, and gene structure of the cucumber FBAs. This analysis highlighted differences in the physicochemical properties and revealed highly conserved domains within the CsFBA family. Additionally, to explore the evolutionary relationships of the CsFBA family further, we constructed comparative syntenic maps with Arabidopsis and tomato, which showed high homology but only one segmental duplication event within the cucumber genome. Expression profiles indicated that the CsFBA gene family is responsive to various abiotic stresses, including low temperature, heat, and salt. Taken together, the results of this study provide a theoretical foundation for understanding the evolution of and future research into the functional characterization of cucumber FBA genes during plant growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingyun Li
- College of Horticulture, Hebei Agricultural University, Baoding 171000, China; (J.Z.); (Y.L.); (Z.Z.); (L.Y.); (Z.X.)
| | - Bingbing Cai
- College of Horticulture, Hebei Agricultural University, Baoding 171000, China; (J.Z.); (Y.L.); (Z.Z.); (L.Y.); (Z.X.)
| |
Collapse
|
15
|
Ji Z, Wang R, Zhang M, Chen L, Wang Y, Hui J, Hao S, Lv B, Jiang Q, Cao Y. Genome-Wide Identification and Expression Analysis of BrBASS Genes in Brassica rapa Reveals Their Potential Roles in Abiotic Stress Tolerance. Curr Issues Mol Biol 2024; 46:6646-6664. [PMID: 39057038 PMCID: PMC11275500 DOI: 10.3390/cimb46070396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The bile acid sodium symporter (BASS) family plays an important role in transporting substances and coordinating plants' salt tolerance. However, the function of BASS in Brassica rapa has not yet been elucidated. In this study, eight BrBASS genes distributed on five chromosomes were identified that belonged to four subfamilies. Expression profile analysis showed that BrBASS7 was highly expressed in roots, whereas BrBASS4 was highly expressed in flowers. The promoter element analysis also identified several typical homeopathic elements involved in abiotic stress tolerance and stress-related hormonal responses. Notably, under salt stress, the expression of BrBASS2 was significantly upregulated; under osmotic stress, that of BrBASS4 increased and then decreased; and under cold stress, that of BrBASS7 generally declined. The protein-protein interaction analysis revealed that the BrBASS2 homologous gene AtBASS2 interacted with Nhd1 (N-mediated heading date-1) to alleviate salt stress in plants, while the BrBASS4 homologous gene AtBASS3 interacted with BLOS1 (biogenesis of lysosome-related organelles complex 1 subunit 1) via co-regulation with SNX1 (sorting nexin 1) to mitigate an unfavorable growing environment for roots. Further, Bra-miR396 (Bra-microRNA396) targeting BrBASS4 and BrBASS7 played a role in the plant response to osmotic and cold stress conditions, respectively. This research demonstrates that BrBASS2, BrBASS4, and BrBASS7 harbor great potential for regulating abiotic stresses. The findings will help advance the study of the functions of the BrBASS gene family.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yunyun Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.J.)
| |
Collapse
|
16
|
Xiong J, Wen G, Song J, Liu X, Chen Q, Zhang G, Xiao Y, Liu X, Deng H, Tang W, Wang F, Lu X. Knockout of the Chlorophyll a Oxygenase Gene OsCAO1 Reduces Chilling Tolerance in Rice Seedlings. Genes (Basel) 2024; 15:721. [PMID: 38927664 PMCID: PMC11202714 DOI: 10.3390/genes15060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Chilling stress is one of the main abiotic factors affecting rice growth and yield. In rice, chlorophyllide a oxygenase encoded by OsCAO1 is responsible for converting chlorophyllide a to chlorophyllide b, playing a crucial role in photosynthesis and thus rice growth. However, little is known about the function of OsCAO1 in chilling stress responses. The presence of the cis-acting element involved in low-temperature responsiveness (LTR) in the OsCAO1 promoter implied that OsCAO1 probably is a cold-responsive gene. The gene expression level of OsCAO1 was usually inhibited by low temperatures during the day and promoted by low temperatures at night. The OsCAO1 knockout mutants generated by the CRISPR-Cas9 technology in rice (Oryza sativa L.) exhibited significantly weakened chilling tolerance at the seedling stage. OsCAO1 dysfunction led to the accumulation of reactive oxygen species and malondialdehyde, an increase in relative electrolyte leakage, and a reduction in antioxidant gene expression under chilling stress. In addition, the functional deficiency of OsCAO1 resulted in more severe damage to chloroplast morphology, such as abnormal grana thylakoid stacking, caused by low temperatures. Moreover, the rice yield was reduced in OsCAO1 knockout mutants. Therefore, the elevated expression of OsCAO1 probably has the potential to increase both rice yield and chilling tolerance simultaneously, providing a strategy to cultivate chilling-tolerant rice varieties with high yields.
Collapse
Affiliation(s)
- Jiayi Xiong
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Genping Wen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Jin Song
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Xiaoyi Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Qiuhong Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Wenbang Tang
- Yuelushan Laboratory, Changsha 410128, China;
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Xuedan Lu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| |
Collapse
|
17
|
Bulle M, Devadasu E, Rampuria S, Subramanyam R, Kirti PB. Plastid-expressed AdDjSKI enhances photosystem II stability, delays leaf senescence, and increases fruit yield in tomato plants under heat stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14374. [PMID: 38837422 DOI: 10.1111/ppl.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.
Collapse
Affiliation(s)
- Mallesham Bulle
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sakshi Rampuria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | |
Collapse
|
18
|
Liu SJ, Cai C, Cai HY, Bai YQ, Wang DY, Zhang H, Peng JG, Xie LJ. Integrated analysis of transcriptome and small RNAome reveals regulatory network of rapid and long-term response to heat stress in Rhododendron moulmainense. PLANTA 2024; 259:104. [PMID: 38551672 PMCID: PMC10980653 DOI: 10.1007/s00425-024-04375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/03/2024] [Indexed: 04/01/2024]
Abstract
MAIN CONCLUSION The post-transcriptional gene regulatory pathway and small RNA pathway play important roles in regulating the rapid and long-term response of Rhododendron moulmainense to high-temperature stress. The Rhododendron plays an important role in maintaining ecological balance. However, it is difficult to domesticate for use in urban ecosystems due to their strict optimum growth temperature condition, and its evolution and adaptation are little known. Here, we combined transcriptome and small RNAome to reveal the rapid response and long-term adaptability regulation strategies in Rhododendron moulmainense under high-temperature stress. The post-transcriptional gene regulatory pathway plays important roles in stress response, in which the protein folding pathway is rapidly induced at 4 h after heat stress, and alternative splicing plays an important role in regulating gene expression at 7 days after heat stress. The chloroplasts oxidative damage is the main factor inhibiting photosynthesis efficiency. Through WGCNA analysis, we identified gene association patterns and potential key regulatory genes responsible for maintaining the ROS steady-state under heat stress. Finally, we found that the sRNA synthesis pathway is induced under heat stress. Combined with small RNAome, we found that more miRNAs are significantly changed under long-term heat stress. Furthermore, MYBs might play a central role in target gene interaction network of differentially expressed miRNAs in R. moulmainense under heat stress. MYBs are closely related to ABA, consistently, ABA synthesis and signaling pathways are significantly inhibited, and the change in stomatal aperture is not obvious under heat stress. Taken together, we gained valuable insights into the transplantation and long-term conservation domestication of Rhododendron, and provide genetic resources for genetic modification and molecular breeding to improve heat resistance in Rhododendron.
Collapse
Affiliation(s)
- Si-Jia Liu
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Chang Cai
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Hong-Yue Cai
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Yu-Qing Bai
- Administrative Office of Wutong Mountain National Park, Shenzhen, 518004, China
| | - Ding-Yue Wang
- Administrative Office of Wutong Mountain National Park, Shenzhen, 518004, China
| | - Hua Zhang
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Jin-Gen Peng
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China.
| | - Li-Juan Xie
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Hao J, Liang Y, Ping J, Wang T, Su Y. Full-length transcriptome analysis of Ophioglossum vulgatum: effects of experimentally identified chloroplast gene clusters on expression and evolutionary patterns. PLANT MOLECULAR BIOLOGY 2024; 114:31. [PMID: 38509284 DOI: 10.1007/s11103-024-01423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/24/2024] [Indexed: 03/22/2024]
Abstract
Genes with similar or related functions in chloroplasts are often arranged in close proximity, forming clusters on chromosomes. These clusters are transcribed coordinated to facilitate the expression of genes with specific function. Our previous study revealed a significant negative correlation between the chloroplast gene expression level of the rare medicinal fern Ophioglossum vulgatum and its evolutionary rates as well as selection pressure. Therefore, in this study, we employed a combination of SMRT and Illumina sequencing technology to analyze the full-length transcriptome sequencing of O. vulgatum for the first time. In particular, we experimentally identified gene clusters based on transcriptome data and investigated the effects of chloroplast gene clustering on expression and evolutionary patterns. The results revealed that the total sequenced data volume of the full-length transcriptome of O. vulgatum amounted to 71,950,652,163 bp, and 110 chloroplast genes received transcript coverage. Nine different types of gene clusters were experimentally identified in their transcripts. The chloroplast cluster genes may cause a decrease in non-synonymous substitution rate and selection pressure, as well as a reduction in transversion rate, transition rate, and their ratio. While expression levels of chloroplast cluster genes in leaf, sporangium, and stem would be relatively elevated. The Mann-Whitney U test indicated statistically significant in the selection pressure, sporangia and leaves groups (P < 0.05). We have contributed novel full-length transcriptome data resources for ferns, presenting new evidence on the effects of chloroplast gene clustering on expression land evolutionary patterns, and offering new theoretical support for transgenic research through gene clustering.
Collapse
Affiliation(s)
- Jing Hao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yingyi Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingyao Ping
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
20
|
Ben Romdhane W, Al-Doss A, Hassairi A. The newly assembled chloroplast genome of Aeluropus littoralis: molecular feature characterization and phylogenetic analysis with related species. Sci Rep 2024; 14:6472. [PMID: 38499663 PMCID: PMC10948853 DOI: 10.1038/s41598-024-57141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
Aeluropus littoralis, a halophyte grass, is widely distributed from the Mediterranean to the Indian subcontinent through the Mongolian Gobi. This model halophyte has garnered increasing attention owing to its use as forage and its high tolerance to environmental stressors. The chloroplast genomes of many plants have been extensively examined for molecular, phylogenetic and transplastomic applications. However, no published research on the A. littoralis chloroplast (cp) genome was discovered. Here, the entire chloroplast genome of A. littoralis was assembled implementing accurate long-read sequences. The entire chloroplast genome, with an estimated length of 135,532 bp (GC content: 38.2%), has a quadripartite architecture and includes a pair of inverted repeat (IR) regions, IRa and IRb (21,012 bp each), separated by a large and a small single-copy regions (80,823 and 12,685 bp, respectively). The features of A. littoralis consist of 133 genes that synthesize 87 peptides, 38 transfer RNAs, and 8 ribosomal RNAs. Of these genes, 86 were unique, whereas 19 were duplicated in IR regions. Additionally, a total of forty-six simple sequence repeats, categorized into 32-mono, four-di, two-tri, and eight-tetranucleotides, were discovered. Furthermore, ten sets of repeats greater than 20 bp were located primarily in the LSC region. Evolutionary analysis based on chloroplast sequence data revealed that A. littoralis with A. lagopoides and A. sinensis belong to the Aeluropodinae subtribe, which is a sister to the Eleusininae in the tribe Cynodonteae and the subfamily Chloridoideae. This subfamily belongs to the PACMAD clade, which contains the majority of the C4 photosynthetic plants in the Poaceae. The newly constructed A. littoralis cp genome offers valuable knowledge for DNA barcoding, phylogenetic, transplastomic research, and other biological studies.
Collapse
Affiliation(s)
- Walid Ben Romdhane
- College of Food and Agricultural Sciences, Plant Production Department, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia.
| | - Abdullah Al-Doss
- College of Food and Agricultural Sciences, Plant Production Department, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Afif Hassairi
- College of Food and Agricultural Sciences, Plant Production Department, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
21
|
Zheng S, Yang L, Zheng H, Wu J, Zhou Z, Tian J. Identification of Hub Genes and Physiological Effects of Overexpressing the Photosynthesis-Related Gene Soly720 in Tomato under High-CO 2 Conditions. Int J Mol Sci 2024; 25:757. [PMID: 38255831 PMCID: PMC10815203 DOI: 10.3390/ijms25020757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Changes in the atmospheric CO2 concentration influence plant growth and development by affecting the morphological structure and photosynthetic performance. Despite evidence for the macro-effects of elevated CO2 concentrations on plant morphology and yield in tomato, the gene regulatory network and key genes related to cross-regulation have not been reported. To identify the hub genes and metabolic pathways involved in the response of tomato to CO2 enrichment, weighted gene co-expression network analysis was conducted using gene expression profiles obtained by RNA sequencing. The role of the photosynthesis-related gene Soly720 (Solyc01g007720) in CO2-enriched tomato plants was explored. Tomato plants responded to CO2 enrichment primarily through RNA-related pathways and the metabolism of amino acids, fatty acids, and carbohydrates. The hub genes in co-expression networks were associated with plant growth and development, including cellular components and photosynthesis. Compared to wild-type plants, transgenic plants overexpressing the Soly720 gene exhibited 13.4%, 5.5%, 8.9%, and 4.1% increases in plant height, stem diameter, leaf length, and leaf width, respectively, under high-CO2 conditions. The morphological improvements in transgenic plants were accompanied by enhancement of photosynthetic performance in terms of chlorophyll contents, photosynthetic characteristics, and key enzyme activities. This study elucidates the response network of tomato to CO2 enrichment and demonstrates the regulatory role of Soly720 in photosynthesis under high-CO2 conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jieyun Tian
- Horticulture College, Shanxi Agricultural University, Jinzhong 030801, China; (S.Z.); (L.Y.); (H.Z.); (J.W.); (Z.Z.)
| |
Collapse
|
22
|
Bogas AC, Cruz FPN, Lacava PT, Sousa CP. Endophytic fungi: an overview on biotechnological and agronomic potential. BRAZ J BIOL 2024; 84:e258557. [DOI: 10.1590/1519-6984.258557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Endophytic fungi colonize the inter- and/or intracellular regions of healthy plant tissues and have a close symbiotic relationship with their hosts. These microorganisms produce antibiotics, enzymes, and other bioactive compounds that enable them to survive in competitive habitats with other microorganisms. In addition, secondary metabolites confer protection to their host plant against other bacterial and fungal pathogens and/or can promote plant growth. Endophytic fungi are viewed as a promising source of bioactive natural products, which can be optimized through changes in growing conditions. The exploration of novel bioactive molecules produced by these microorganisms has been attracting attention from researchers. The chemical and functional diversity of natural products from endophytic fungi exhibits a broad spectrum of applications in medicine, agriculture, industry and the environment. Fungal endophytes can also enhance the photoprotective effects and photochemical efficiency in the host plants. Modern omic approaches have facilitated research investigating symbiotic plant-endophytic fungi interactions. Therefore, research on endophytic fungi can help discovery novel biomolecules for various biotechnological applications and develop a sustainable agriculture.
Collapse
|
23
|
Kumar V, Wegener M, Knieper M, Kaya A, Viehhauser A, Dietz KJ. Strategies of Molecular Signal Integration for Optimized Plant Acclimation to Stress Combinations. Methods Mol Biol 2024; 2832:3-29. [PMID: 38869784 DOI: 10.1007/978-1-0716-3973-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Plant growth and survival in their natural environment require versatile mitigation of diverse threats. The task is especially challenging due to the largely unpredictable interaction of countless abiotic and biotic factors. To resist an unfavorable environment, plants have evolved diverse sensing, signaling, and adaptive molecular mechanisms. Recent stress studies have identified molecular elements like secondary messengers (ROS, Ca2+, etc.), hormones (ABA, JA, etc.), and signaling proteins (SnRK, MAPK, etc.). However, major gaps remain in understanding the interaction between these pathways, and in particular under conditions of stress combinations. Here, we highlight the challenge of defining "stress" in such complex natural scenarios. Therefore, defining stress hallmarks for different combinations is crucial. We discuss three examples of robust and dynamic plant acclimation systems, outlining specific plant responses to complex stress overlaps. (a) The high plasticity of root system architecture is a decisive feature in sustainable crop development in times of global climate change. (b) Similarly, broad sensory abilities and apparent control of cellular metabolism under adverse conditions through retrograde signaling make chloroplasts an ideal hub. Functional specificity of the chloroplast-associated molecular patterns (ChAMPs) under combined stresses needs further focus. (c) The molecular integration of several hormonal signaling pathways, which bring together all cellular information to initiate the adaptive changes, needs resolving.
Collapse
Affiliation(s)
- Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Melanie Wegener
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Madita Knieper
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Armağan Kaya
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Andrea Viehhauser
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
24
|
Lee K. Relocation of chloroplast proteins from cytosols into chloroplasts. PLANT SIGNALING & BEHAVIOR 2023; 18:2258321. [PMID: 37707988 PMCID: PMC10503445 DOI: 10.1080/15592324.2023.2258321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The chloroplasts in terrestrial plants play a functional role as a major sensor for perceiving physiological changes under normal and stressful conditions. Despite the fact that the plant chloroplast genome encodes around 120 genes, which are mainly essential for photosynthesis and chloroplast biogenesis, the functional roles of the genes remain to be determined in plant's response to environmental stresses. Photosynthetic electron transfer D (PETD) is a key component of the chloroplast cytochrome b6f complex. Chloroplast ndhA (NADH dehydrogenase A) and ndhB (NADH dehydrogenase B) interact with photosystem I (PSI), forming NDH-PSI supercomplex. Notably, artificial targeting of chloroplasts-encoded proteins, PETD, NDHA, or NDHB, was successfully relocated from cytosols into chloroplasts. The result suggests that artificial targeting of proteins to chloroplasts is potentially open to the possibility of chloroplast biotechnology in engineering of plant tolerance against biotic and abiotic stresses.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Biology, Jeju National University, Jeju, Korea
| |
Collapse
|
25
|
Martins J, Neves M, Canhoto J. Drought-Stress-Induced Changes in Chloroplast Gene Expression in Two Contrasting Strawberry Tree ( Arbutus unedo L.) Genotypes. PLANTS (BASEL, SWITZERLAND) 2023; 12:4133. [PMID: 38140460 PMCID: PMC10747485 DOI: 10.3390/plants12244133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
This study investigated the effect of drought stress on the expression of chloroplast genes in two different genotypes (A1 and A4) of strawberry tree plants with contrasting performances. Two-year-old plants were subjected to drought (20 days at 18% field capacity), and the photosynthetic activity, chlorophyll content, and expression levels of 16 chloroplast genes involved in photosynthesis and metabolism-related enzymes were analyzed. Genotype-specific responses were prominent, with A1 displaying wilting and leaf curling, contrasting with the mild symptoms observed in A4. Quantification of damage using the net CO2 assimilation rates and chlorophyll content unveiled a significant reduction in A1, while A4 maintained stability. Gene expression analysis revealed substantial downregulation of A1 (15 out of 16 genes) and upregulation of A4 (14 out of 16 genes). Notably, psbC was downregulated in A1, while it was prominently upregulated in A4. Principal Component Analysis (PCA) highlighted genotype-specific clusters, emphasizing distinct responses under stress, whereas a correlation analysis elucidated intricate relationships between gene expression, net CO2 assimilation, and chlorophyll content. Particularly, a positive correlation with psaB, whereas a negative correlation with psbC was found in genotype A1. Regression analysis identified potential predictors for net CO2 assimilation, in particular psaB. These findings contribute valuable insights for future strategies targeting crop enhancement and stress resilience, highlighting the central role of chloroplasts in orchestrating plant responses to environmental stressors, and may contribute to the development of drought-tolerant plant varieties, which are essential for sustaining agriculture in regions affected by water scarcity.
Collapse
Affiliation(s)
- João Martins
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (M.N.); (J.C.)
| | | | | |
Collapse
|
26
|
Camargo AF, Bonatto C, Scapini T, Klanovicz N, Tadioto V, Cadamuro RD, Bazoti SF, Kubeneck S, Michelon W, Reichert Júnior FW, Mossi AJ, Alves Júnior SL, Fongaro G, Treichel H. Fungus-based bioherbicides on circular economy. Bioprocess Biosyst Eng 2023; 46:1729-1754. [PMID: 37743409 DOI: 10.1007/s00449-023-02926-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
This review aimed to show that bioherbicides are possible in organic agriculture as natural compounds from fungi and metabolites produced by them. It is discussed that new formulations must be developed to improve field stability and enable the commercialization of microbial herbicides. Due to these bottlenecks, it is crucial to advance the bioprocesses behind the formulation and fermentation of bio-based herbicides, scaling up, strategies for field application, and the potential of bioherbicides in the global market. In this sense, it proposed insights for modern agriculture based on sustainable development and circular economy, precisely the formulation, scale-up, and field application of microbial bioherbicides.
Collapse
Affiliation(s)
- Aline Frumi Camargo
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Charline Bonatto
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Thamarys Scapini
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Natalia Klanovicz
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, University of São Paulo, São Paulo, Brazil
| | - Viviani Tadioto
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Dorighello Cadamuro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Suzana Fátima Bazoti
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Simone Kubeneck
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | | | | | - Altemir José Mossi
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | | | - Gislaine Fongaro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Helen Treichel
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil.
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil.
| |
Collapse
|
27
|
Li ZA, Li Y, Liu D, Molloy DP, Luo ZF, Li HO, Zhao J, Zhou J, Su Y, Wang RZ, Huang C, Xiao LT. YUCCA2 (YUC2)-Mediated 3-Indoleacetic Acid (IAA) Biosynthesis Regulates Chloroplast RNA Editing by Relieving the Auxin Response Factor 1 (ARF1)-Dependent Inhibition of Editing Factors in Arabidopsis thaliana. Int J Mol Sci 2023; 24:16988. [PMID: 38069311 PMCID: PMC10706925 DOI: 10.3390/ijms242316988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Although recent research progress on the abundant C-to-U RNA editing events in plant chloroplasts and mitochondria has uncovered many recognition factors and their molecular mechanisms, the intrinsic regulation of RNA editing within plants remains largely unknown. This study aimed to establish a regulatory relationship in Arabidopsis between the plant hormone auxin and chloroplast RNA editing. We first analyzed auxin response elements (AuxREs) present within promoters of chloroplast editing factors reported to date. We found that each has more than one AuxRE, suggesting a potential regulatory role of auxin in their expression. Further investigation unveiled that the depletion of auxin synthesis gene YUC2 reduces the expression of several editing factors. However, in yuc2 mutants, only the expression of CRR4, DYW1, ISE2, and ECD1 editing factors and the editing efficiency of their corresponding editing sites, ndhD-2 and rps14-149, were simultaneously suppressed. In addition, exogenous IAA and the overexpression of YUC2 enhanced the expression of these editing factors and the editing efficiency at the ndhD-2 and rps14-149 sites. These results suggested a direct effect of auxin upon the editing of the ndhD-2 and rps14-149 sites through the modulation of the expression of the editing factors. We further demonstrated that ARF1, a downstream transcription factor in the auxin-signaling pathway, could directly bind to and inactivate the promoters of CRR4, DYW1, and ISE2 in a dual-luciferase reporter system, thereby inhibiting their expression. Moreover, the overexpression of ARF1 in Arabidopsis significantly reduced the expression of the three editing factors and the editing efficiency at the ndhD-2 and rps14-149 sites. These data suggest that YUC2-mediated auxin biosynthesis governs the RNA-editing process through the ARF1-dependent signal transduction pathway.
Collapse
Affiliation(s)
- Zi-Ang Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Yi Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Dan Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - David P. Molloy
- Department of Basic Medicine, Chongqing Medical University, Chongqing 400016, China;
| | - Zhou-Fei Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Hai-Ou Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Jing Zhao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Jing Zhou
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Ruo-Zhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Chao Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Lang-Tao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| |
Collapse
|
28
|
Jiang Y, Lei P, Ma L, Dong K, Zhang Y, Zhao J, Guo X, Liu J, Li W, Tao L, Meng F. Effects of bleeding of Actinidia arguta (Sieb. & Zucc) Planch. ex miq. on its plant growth, physiological characteristics and fruit quality. BMC PLANT BIOLOGY 2023; 23:531. [PMID: 37914989 PMCID: PMC10621140 DOI: 10.1186/s12870-023-04560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Bleeding is as particularly a serious phenomenon in Actinidia arguta and has important effects on this plant's growth and development. Here we used A. arguta to study the effects of bleeding on the growth and development of leaves and fruits after a bleeding episode. We detect and analyze physiological indices of leaves and fruit after bleeding. The result revealed that the relative electrical conductivity and malondialdehyde (MDA) of leaves increased in treatment. Nitro blue tetrazolium chloride (NBT) and 3,3-diaminobenzidine (DAB) staining revealed the accumulation of reactive oxygen species (ROS) in leaves after bleeding. The chlorophyll content and photosynthetic parameter of plants were also decreased. In fruits, pulp and seed water content decreased after the damage, as did fruit vitamin C (Vc), soluble sugar content, and soluble solids content (SSC); the titratable acid content did not change significantly. We therefore conclude that bleeding affects the physiological indices of A. arguta. Our study provides a theoretical basis for understanding the physiological changes of A. arguta after bleeding episodes and laying a timely foundation for advancing research on A. arguta bleeding and long-term field studies should be executed in order to gain insights into underlying mechanisms.
Collapse
Affiliation(s)
- Yaxuan Jiang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Pei Lei
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Le Ma
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Kun Dong
- Horticultural Sub-Academy, Heilongjiang Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yu Zhang
- Horticultural Sub-Academy, Heilongjiang Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jia Zhao
- Forest Botanical Garden of Heilongjiang Province, Harbin, 150040, China
| | - Xinyu Guo
- Harbin Engineering University, Harbin, 150001, China
| | - Jianxin Liu
- Crop Tillage and Cultivation, Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei Li
- Crop Tillage and Cultivation, Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Lei Tao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
29
|
Gu X, Li L, Li S, Shi W, Zhong X, Su Y, Wang T. Adaptive evolution and co-evolution of chloroplast genomes in Pteridaceae species occupying different habitats: overlapping residues are always highly mutated. BMC PLANT BIOLOGY 2023; 23:511. [PMID: 37880608 PMCID: PMC10598918 DOI: 10.1186/s12870-023-04523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND The evolution of protein residues depends on the mutation rates of their encoding nucleotides, but it may also be affected by co-evolution with other residues. Chloroplasts function as environmental sensors, transforming fluctuating environmental signals into different physiological responses. We reasoned that habitat diversity may affect their rate and mode of evolution, which might be evidenced in the chloroplast genome. The Pteridaceae family of ferns occupy an unusually broad range of ecological niches, which provides an ideal system for analysis. RESULTS We conducted adaptive evolution and intra-molecular co-evolution analyses of Pteridaceae chloroplast DNAs (cpDNAs). The results indicate that the residues undergoing adaptive evolution and co-evolution were mostly independent, with only a few residues being simultaneously involved in both processes, and these overlapping residues tend to exhibit high mutations. Additionally, our data showed that Pteridaceae chloroplast genes are under purifying selection. Regardless of whether we grouped species by lineage (which corresponded with ecological niches), we determined that positively selected residues mainly target photosynthetic genes. CONCLUSIONS Our work provides evidence for the adaptive evolution of Pteridaceae cpDNAs, especially photosynthetic genes, to different habitats and sheds light on the adaptive evolution and co-evolution of proteins.
Collapse
Affiliation(s)
- Xiaolin Gu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lingling Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Sicong Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Wanxin Shi
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaona Zhong
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
30
|
Chae HB, Jung YJ, Paeng SK, Jung HS, Lee SY, Lee JR. Functional changes of OsTrxm from reductase to molecular chaperone under heat shock stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108005. [PMID: 37776672 DOI: 10.1016/j.plaphy.2023.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
Ubiquitous disulfide reductases, thioredoxins (Trxs), function in the redox balance of all living organisms. Although the roles of the rice (Oryza sativa) Trx m-type isoform (OsTrxm) in chloroplast development have been already published, biochemical and molecular functions of OsTrxm remain to be elucidated for decades. The OsTrxm and its two conserved active cysteine mutant (OsTrxm C95S/C98S, referred to as OsTrxmC/S) proteins in Arabidopsis thaliana were overexpressed to characterize in vivo roles of active cysteines of OsTrxm. Interestingly, the OsTrxm overexpressed variant plants were resistant to heat shock treatment. Especially OsTrxmC/S with higher molecular weight (HMW) complexes showed higher heat tolerance than OsTrxm with lower molecular weight (LMW) structure in Arabidopsis thaliana. To confirm the importance of active cysteines on structural changes under heat stress, OsTrxm and OsTrxmC/S proteins were bacterially expressed and isolated. This study found that two proteins have various structures ranging from LMW to HMW complexes and have potential functions as a disulfide reductase and a molecular chaperone, which has never been reported anywhere. The function of molecular chaperone predominated in the HMW complexes, whereas the disulfide reductase function was observed in LMW forms. These results suggest that the active cysteines of OsTrxm play a critical role in protein structural change as well as heat tolerance in plants.
Collapse
Affiliation(s)
- Ho Byoung Chae
- Division of Applied Life Sciences (BK21(+)), PMBBRC, and Plant Biological Rhythm Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Young Jun Jung
- National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657, Republic of Korea
| | - Seol Ki Paeng
- Division of Applied Life Sciences (BK21(+)), PMBBRC, and Plant Biological Rhythm Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21(+)), PMBBRC, and Plant Biological Rhythm Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jung Ro Lee
- National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657, Republic of Korea.
| |
Collapse
|
31
|
Kurt S, Kaymaz Y, Ateş D, Tanyolaç MB. Complete chloroplast genome of Lens lamottei reveals intraspecies variation among with Lens culinaris. Sci Rep 2023; 13:14959. [PMID: 37696838 PMCID: PMC10495401 DOI: 10.1038/s41598-023-41287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
Lens lamottei is a member of the Fabaceae family and the second gene pool of the genus Lens. The environmental factors that drove the divergence among wild and cultivated species have been studied extensively. Recent research has focused on genomic signatures associated with various phenotypes with the acceleration of next-generation techniques in molecular profiling. Therefore, in this study, we provide the complete sequence of the chloroplast genome sequence in the wild Lens species L. lamottei with a deep coverage of 713 × next-generation sequencing (NGS) data for the first time. Compared to the cultivated species, Lens culinaris, we identified synonymous, and nonsynonymous changes in the protein-coding regions of the genes ndhB, ndhF, ndhH, petA, rpoA, rpoC2, rps3, and ycf2 in L. lamottei. Phylogenetic analysis of chloroplast genomes of various plants under Leguminosae revealed that L. lamottei and L. culinaris are closest to one another than to other species. The complete chloroplast genome of L. lamottei also allowed us to reanalyze previously published transcriptomic data, which showed high levels of gene expression for ATP-synthase, rubisco, and photosystem genes. Overall, this study provides a deeper insight into the diversity of Lens species and the agricultural importance of these plants through their chloroplast genomes.
Collapse
Affiliation(s)
- Selda Kurt
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Yasin Kaymaz
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Duygu Ateş
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | | |
Collapse
|
32
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
33
|
Xu D, Tang Q, Xu P, Schäffner AR, Leister D, Kleine T. Response of the organellar and nuclear (post)transcriptomes of Arabidopsis to drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1220928. [PMID: 37528975 PMCID: PMC10387551 DOI: 10.3389/fpls.2023.1220928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Plants have evolved sophisticated mechanisms to cope with drought, which involve massive changes in nuclear gene expression. However, little is known about the roles of post-transcriptional processing of nuclear or organellar transcripts and how meaningful these changes are. To address these issues, we used RNA-sequencing after ribosomal RNA depletion to monitor (post)transcriptional changes during different times of drought exposure in Arabidopsis Col-0. Concerning the changes detected in the organellar transcriptomes, chloroplast transcript levels were globally reduced, editing efficiency dropped, but splicing was not affected. Mitochondrial transcripts were slightly elevated, while editing and splicing were unchanged. Conversely, alternative splicing (AS) affected nearly 1,500 genes (9% of expressed nuclear genes). Of these, 42% were regulated solely at the level of AS, representing transcripts that would have gone unnoticed in a microarray-based approach. Moreover, we identified 927 isoform switching events. We provide a table of the most interesting candidates, and as proof of principle, increased drought tolerance of the carbonic anhydrase ca1 and ca2 mutants is shown. In addition, altering the relative contributions of the spliced isoforms could increase drought resistance. For example, our data suggest that the accumulation of a nonfunctional FLM (FLOWERING LOCUS M) isoform and not the ratio of FLM-ß and -δ isoforms may be responsible for the phenotype of early flowering under long-day drought conditions. In sum, our data show that AS enhances proteome diversity to counteract drought stress and represent a valuable resource that will facilitate the development of new strategies to improve plant performance under drought.
Collapse
Affiliation(s)
- Duorong Xu
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Qian Tang
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ping Xu
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Anton R. Schäffner
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
34
|
Kwok ACM, Leung SK, Wong JTY. DNA:RNA Hybrids Are Major Dinoflagellate Minicircle Molecular Types. Int J Mol Sci 2023; 24:ijms24119651. [PMID: 37298602 DOI: 10.3390/ijms24119651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Peridinin-containing dinoflagellate plastomes are predominantly encoded in nuclear genomes, with less than 20 essential chloroplast proteins carried on "minicircles". Each minicircle generally carries one gene and a short non-coding region (NCR) with a median length of approximately 400-1000 bp. We report here differential nuclease sensitivity and two-dimensional southern blot patterns, suggesting that dsDNA minicircles are in fact the minor forms, with substantial DNA:RNA hybrids (DRHs). Additionally, we observed large molecular weight intermediates, cell-lysate-dependent NCR secondary structures, multiple bidirectional predicted ssDNA structures, and different southern blot patterns when probed with different NCR fragments. In silico analysis suggested the existence of substantial secondary structures with inverted repeats (IR) and palindrome structures within the initial ~650 bp of the NCR sequences, in accordance with conversion event(s) outcomes with PCR. Based on these findings, we propose a new transcription-templating-translation model, which is associated with cross-hopping shift intermediates. Since dinoflagellate chloroplasts are cytosolic and lack nuclear envelope breakdown, the dynamic DRH minicircle transport could have contributed to the spatial-temporal dynamics required for photosystem repair. This represents a paradigm shift from the previous understanding of "minicircle DNAs" to a "working plastome", which will have significant implications for its molecular functionality and evolution.
Collapse
Affiliation(s)
- Alvin Chun Man Kwok
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Siu Kai Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| |
Collapse
|
35
|
Lu C, Li L, Liu X, Chen M, Wan S, Li G. Salt Stress Inhibits Photosynthesis and Destroys Chloroplast Structure by Downregulating Chloroplast Development-Related Genes in Robinia pseudoacacia Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:1283. [PMID: 36986971 PMCID: PMC10054032 DOI: 10.3390/plants12061283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Soil salinization is an important factor limiting food security and ecological stability. As a commonly used greening tree species, Robinia pseudoacacia often suffers from salt stress that can manifest as leaf yellowing, decreased photosynthesis, disintegrated chloroplasts, growth stagnation, and even death. To elucidate how salt stress decreases photosynthesis and damages photosynthetic structures, we treated R. pseudoacacia seedlings with different concentrations of NaCl (0, 50, 100, 150, and 200 mM) for 2 weeks and then measured their biomass, ion content, organic soluble substance content, reactive oxygen species (ROS) content, antioxidant enzyme activity, photosynthetic parameters, chloroplast ultrastructure, and chloroplast development-related gene expression. NaCl treatment significantly decreased biomass and photosynthetic parameters, but increased ion content, organic soluble substances, and ROS content. High NaCl concentrations (100-200 mM) also led to distorted chloroplasts, scattered and deformed grana lamellae, disintegrated thylakoid structures, irregularly swollen starch granules, and larger, more numerous lipid spheres. Compared to control (0 mM NaCl), the 50 mM NaCl treatment significantly increased antioxidant enzyme activity while upregulating the expression of the ion transport-related genes Na+/H+ exchanger 1(NHX 1) and salt overly sensitive 1 (SOS 1) and the chloroplast development-related genes psaA, psbA, psaB, psbD, psaC, psbC, ndhH, ndhE, rps7, and ropA. Additionally, high concentrations of NaCl (100-200 mM) decreased antioxidant enzyme activity and downregulated the expression of ion transport- and chloroplast development-related genes. These results showed that although R. pseudoacacia can tolerate low concentrations of NaCl, high concentrations (100-200 mM) can damage chloroplast structure and disturb metabolic processes by downregulating gene expression.
Collapse
Affiliation(s)
- Chaoxia Lu
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lingyu Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China
- Dezhou Graduate School, North University of China, Kangbo Road, Dezhou 253034, China
| | - Xiuling Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Shubo Wan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guowei Li
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
36
|
Li J, Cullis C. Comparative analysis of 84 chloroplast genomes of Tylosema esculentum reveals two distinct cytotypes. FRONTIERS IN PLANT SCIENCE 2023; 13:1025408. [PMID: 36798803 PMCID: PMC9927231 DOI: 10.3389/fpls.2022.1025408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Tylosema esculentum (marama bean) is an important orphan legume from southern Africa that has long been considered to have the potential to be domesticated as a crop. The chloroplast genomes of 84 marama samples collected from various geographical locations in Namibia and Pretoria were compared in this study. The cp genomes were analyzed for diversity, including SNPs, indels, structural alterations, and heteroplasmy. The marama cp genomes ranged in length from 161,537 bp to 161,580 bp and contained the same sets of genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The genes rpoC2 and rpoB, and the intergenic spacers trnT-trnL and ndhG-ndhI were found to be more diverse than other regions of the marama plastome. 15 haplotypes were found to be divided into two groups, differing at 122 loci and at a 230 bp inversion. One type appears to have greater variability within the major genome present, and variations amongst individuals with this type of chloroplast genome seems to be distributed within specific geographic regions but with very limited sampling for some regions. However, deep sequencing has identified that within most of the individuals, both types of chloroplast genomes are present, albeit one is generally at a very low frequency. The inheritance of this complex of chloroplast genomes appears to be fairly constant, providing a conundrum of how the two genomes co-exist and are propagated through generations. The possible consequences for adaptation to the harsh environment in which T. esculentum survives are considered. The results pave the way for marama variety identification, as well as for understanding the origin and evolution of the bean.
Collapse
|
37
|
Sahoo S, Rakshit R. The pattern of coding sequences in the chloroplast genome of Atropa belladonna and a comparative analysis with other related genomes in the nightshade family. Genomics Inform 2022; 20:e43. [PMID: 36617650 PMCID: PMC9847383 DOI: 10.5808/gi.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
Atropa belladonna is a valuable medicinal plant and a commercial source of tropane alkaloids, which are frequently utilized in therapeutic practice. In this study, bioinformaticmethodologies were used to examine the pattern of coding sequences and the factors thatmight influence codon usage bias in the chloroplast genome of Atropa belladonna andother nightshade genomes. The chloroplast engineering being a promising field in modernbiotechnology, the characterization of chloroplast genome is very important. The resultsrevealed that the chloroplast genomes of Nicotiana tabacum, Solanum lycopersicum, Capsicum frutescens, Datura stramonium, Lyciumbarbarum, Solanum melongena, and Solanumtuberosum exhibited comparable codon usage patterns. In these chloroplast genomes, weobserved a weak codon usage bias. According to the correspondence analysis, the genesisof the codon use bias in these chloroplast genes might be explained by natural selection,directed mutational pressure, and other factors. GC12 and GC3S were shown to have nomeaningful relationship. Further research revealed that natural selection primarily shapedthe codon usage in A. belladonna and other nightshade genomes for translational efficiency. The sequencing properties of these chloroplast genomes were also investigated by investing the occurrences of palindromes and inverted repeats, which would be useful forfuture research on medicinal plants.
Collapse
Affiliation(s)
- Satyabrata Sahoo
- Department of Physics, Dhruba Chand Halder College, Dakshin Barasat 743372, India,*Corresponding author E-mail:
| | - Ria Rakshit
- Department of Botany, Baruipur College, Baruipur 743610, India
| |
Collapse
|
38
|
Wang Z, Sun J, Zu X, Gong J, Deng H, Hang R, Zhang X, Liu C, Deng X, Luo L, Wei X, Song X, Cao X. Pseudouridylation of chloroplast ribosomal RNA contributes to low temperature acclimation in rice. THE NEW PHYTOLOGIST 2022; 236:1708-1720. [PMID: 36093745 DOI: 10.1111/nph.18479] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Ribosomal RNAs (rRNAs) undergo many modifications during transcription and maturation; homeostasis of rRNA modifications is essential for chloroplast biogenesis in plants. The chloroplast acts as a hub to sense environmental signals, such as cold temperature. However, how RNA modifications contribute to low temperature responses remains unknown. Here we reveal that pseudouridine (Ψ) modification of rice chloroplast rRNAs mediated by the pseudouridine synthase (OsPUS1) contributes to cold tolerance at seedling stage. Loss-function of OsPUS1 leads to abnormal chloroplast development and albino seedling phenotype at low temperature. We find that OsPUS1 is accumulated upon cold and binds to chloroplast precursor rRNAs (pre-rRNAs) to catalyse the pseudouridylation on rRNA. These modifications on chloroplast rRNAs could be required for their processing, as the reduction of mature chloroplast rRNAs and accumulation of pre-rRNAs are observed in ospus1-1 at low temperature. Therefore, the ribosome activity and translation in chloroplasts is disturbed in ospus1-1. Furthermore, transcriptome and translatome analysis reveals that OsPUS1 balances growth and stress-responsive state, preventing excess reactive oxygen species accumulation. Taken together, our findings unveil a crucial function of Ψ in chloroplast ribosome biogenesis and cold tolerance in rice, with potential applications in crop improvement.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Zu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Gong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hongjing Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runlai Hang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofan Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
39
|
Huang B, Qu G, He Y, Zhang J, Fan J, Tang T. Study on high-CO 2 tolerant Dunaliella salina and its mechanism via transcriptomic analysis. Front Bioeng Biotechnol 2022; 10:1086357. [PMID: 36532596 PMCID: PMC9751823 DOI: 10.3389/fbioe.2022.1086357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2023] Open
Abstract
Microalgae has been regarded as a promising method for reducing CO2 emission. High CO2 concentration generally inhibits algal growth, and previous studies have mostly focused on breeding freshwater algae with high CO2 tolerance. In this study, one marine algal strain Dunaliella salina (D. salina) was grown under 0.03%-30 % CO2 and 3% NaCl conditions, and was evaluated to determine its potential for CO2 assimilation. The results showed that D. salina could tolerate 30% CO2 , and its maximum biomass concentration could reach 1.13 g·L-1 after 8 days incubation, which was 1.85 times higher than that of incubation in air (0.03%). The phenomenon of high-CO2 tolerance in D. salina culture was discussed basing on transcriptome analysis. The results showed that D. salina was subjected to oxidative stress under 30% CO2 conditions, and the majority genes involving in antioxidant system, such as SOD, CAT, and APX genes were up-regulated to scavenge ROS. In addition, most of the key enzyme genes related to photosynthesis, carbon fixation and metabolism were up-regulated, which are consistent with the higher physiological and biochemical values for D. salina incubation under 30% CO2 .
Collapse
Affiliation(s)
- Bo Huang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Gaopin Qu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yulong He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jinli Zhang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Tao Tang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
40
|
Mohammed T, Firoz A, Ramadan AM. RNA Editing in Chloroplast: Advancements and Opportunities. Curr Issues Mol Biol 2022; 44:5593-5604. [PMID: 36421663 PMCID: PMC9688838 DOI: 10.3390/cimb44110379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 07/25/2023] Open
Abstract
Many eukaryotic and prokaryotic organisms employ RNA editing (insertion, deletion, or conversion) as a post-transcriptional modification mechanism. RNA editing events are common in these organelles of plants and have gained particular attention due to their role in the development and growth of plants, as well as their ability to cope with abiotic stress. Owing to rapid developments in sequencing technologies and data analysis methods, such editing sites are being accurately predicted, and many factors that influence RNA editing are being discovered. The mechanism and role of the pentatricopeptide repeat protein family of proteins in RNA editing are being uncovered with the growing realization of accessory proteins that might help these proteins. This review will discuss the role and type of RNA editing events in plants with an emphasis on chloroplast RNA editing, involved factors, gaps in knowledge, and future outlooks.
Collapse
Affiliation(s)
- Taimyiah Mohammed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed M. Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza 12619, Egypt
| |
Collapse
|
41
|
Wang Y, Wang J, Chen L, Meng X, Zhen X, Liang Y, Han Y, Li H, Zhang B. Identification and function analysis of yellow-leaf mutant (YX-yl) of broomcorn millet. BMC PLANT BIOLOGY 2022; 22:463. [PMID: 36167497 PMCID: PMC9513943 DOI: 10.1186/s12870-022-03843-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/12/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Broomcorn millet is highly tolerant to drought and barren soil. Changes in chlorophyll content directly affect leaf color, which subsequently leadsleading to poor photosynthetic performance and reduced crop yield. Herein, we isolated a yellow leaf mutant (YX-yl) using a forward genetics approach and evaluated its agronomic traits, photosynthetic pigment content, chloroplast ultrastructure, and chlorophyll precursors. Furthermore, the molecular mechanism of yellowing was explored using transcriptome sequencing. RESULTS The YX-yl mutant showed significantly decreased plant height and low yield. The leaves exhibited a yellow-green phenotype and poor photosynthetic capacity during the entire growth period. The content of chlorophyll a, chlorophyll b, and carotenoids in YX-yl leaves was lower than that in wild-type leaves. Chlorophyll precursor analysis results showed that chlorophyll biosynthesis in YX-yl was hindered by the conversion of porphobilinogen to protoporphyrin IX. Examination of chloroplast ultrastructure in the leaves revealed that the chloroplasts of YX-yl accumulated on one side of the cell. Moreover, the chloroplast structure of YX-yl was degraded. The inner and outer membranes of the chloroplasts could not be distinguished well. The numbers of grana and grana thylakoids in the chloroplasts were low. The transcriptome of the yellowing mutant YX-yl was sequenced and compared with that of the wild type. Nine chlorophyll-related genes with significantly different expression profiles were identified: PmUROD, PmCPO, PmGSAM, PmPBDG, PmLHCP, PmCAO, PmVDE, PmGluTR, and PmPNPT. The proteins encoded by these genes were located in the chloroplast, chloroplast membrane, chloroplast thylakoid membrane, and chloroplast matrix and were mainly involved in chlorophyll biosynthesis and redox-related enzyme regulation. CONCLUSIONS YX-yl is an ideal material for studying pigment metabolism mechanisms. Changes in the expression patterns of some genes between YX-yl and the wild type led to differences in chloroplast structures and enzyme activities in the chlorophyll biosynthesis pathway, ultimately resulting in a yellowing phenotype in the YX-yl mutant. Our findings provide an insight to the molecular mechanisms of leaf color formation and chloroplast development in broomcorn millet.
Collapse
Affiliation(s)
- Yushen Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China, 030801
- Shanxi Key Laboratory of Germplasm Innovation and Molecular Breeding of Minor Crop, Taigu, Shanxi, China, 030801
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production With High-Quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Taigu, Shanxi, China, 030801
| | - Junjie Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China, 030801
| | - Liqing Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China, 030801
| | - Xiaowei Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China, 030801
| | - Xiaoxi Zhen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China, 030801
| | - Yinpei Liang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China, 030801
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China, 030801
- Shanxi Key Laboratory of Germplasm Innovation and Molecular Breeding of Minor Crop, Taigu, Shanxi, China, 030801
| | - Hongying Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China, 030801
| | - Bin Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China, 030801.
- Shanxi Key Laboratory of Germplasm Innovation and Molecular Breeding of Minor Crop, Taigu, Shanxi, China, 030801.
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production With High-Quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Taigu, Shanxi, China, 030801.
- Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China, 030801.
| |
Collapse
|
42
|
Foyer CH, Hanke G. ROS production and signalling in chloroplasts: cornerstones and evolving concepts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:642-661. [PMID: 35665548 PMCID: PMC9545066 DOI: 10.1111/tpj.15856] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species (ROS) such as singlet oxygen, superoxide (O2●- ) and hydrogen peroxide (H2 O2 ) are the markers of living cells. Oxygenic photosynthesis produces ROS in abundance, which act as a readout of a functional electron transport system and metabolism. The concept that photosynthetic ROS production is a major driving force in chloroplast to nucleus retrograde signalling is embedded in the literature, as is the role of chloroplasts as environmental sensors. The different complexes and components of the photosynthetic electron transport chain (PETC) regulate O2●- production in relation to light energy availability and the redox state of the stromal Cys-based redox systems. All of the ROS generated in chloroplasts have the potential to act as signals and there are many sulphhydryl-containing proteins and peptides in chloroplasts that have the potential to act as H2 O2 sensors and function in signal transduction. While ROS may directly move out of the chloroplasts to other cellular compartments, ROS signalling pathways can only be triggered if appropriate ROS-sensing proteins are present at or near the site of ROS production. Chloroplast antioxidant systems serve either to propagate these signals or to remove excess ROS that cannot effectively be harnessed in signalling. The key challenge is to understand how regulated ROS delivery from the PETC to the Cys-based redox machinery is organised to transmit redox signals from the environment to the nucleus. Redox changes associated with stromal carbohydrate metabolism also play a key role in chloroplast signalling pathways.
Collapse
Affiliation(s)
- Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | - Guy Hanke
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
43
|
Choi B, Hyeon DY, Lee J, Long TA, Hwang D, Hwang I. E3 ligase BRUTUS Is a Negative Regulator for the Cellular Energy Level and the Expression of Energy Metabolism-Related Genes Encoded by Two Organellar Genomes in Leaf Tissues. Mol Cells 2022; 45:294-305. [PMID: 35422451 PMCID: PMC9095504 DOI: 10.14348/molcells.2022.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022] Open
Abstract
E3 ligase BRUTUS (BTS), a putative iron sensor, is expressed in both root and shoot tissues in seedlings of Arabidopsis thaliana. The role of BTS in root tissues has been well established. However, its role in shoot tissues has been scarcely studied. Comparative transcriptome analysis with shoot and root tissues revealed that BTS is involved in regulating energy metabolism by modulating expression of mitochondrial and chloroplast genes in shoot tissues. Moreover, in shoot tissues of bts-1 plants, levels of ADP and ATP and the ratio of ADP/ATP were greatly increased with a concomitant decrease in levels of soluble sugar and starch. The decreased starch level in bts-1 shoot tissues was restored to the level of shoot tissues of wild-type plants upon vanadate treatment. Through this study, we expand the role of BTS to regulation of energy metabolism in the shoot in addition to its role of iron deficiency response in roots.
Collapse
Affiliation(s)
- Bongsoo Choi
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Do Young Hyeon
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Juhun Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Terri A. Long
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Bioinformatics Institute, Seoul National University, Seoul 08826, Korea
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
44
|
Zinani OQH, Keseroğlu K, Özbudak EM. Regulatory mechanisms ensuring coordinated expression of functionally related genes. Trends Genet 2022; 38:73-81. [PMID: 34376301 PMCID: PMC8678166 DOI: 10.1016/j.tig.2021.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
Coordinated spatiotemporal expression of large sets of genes is required for the development and homeostasis of organisms. To achieve this goal, organisms use myriad strategies where they form operons, utilize bidirectional promoters, cluster genes, share enhancers among genes by DNA looping, and form topologically associated domains and transcriptional condensates. Coexpression achieved by these different strategies is hypothesized to have functional importance in minimizing gene expression variability, establishing dosage balance to ensure stoichiometry of protein complexes, and minimizing accumulation of toxic intermediate metabolites. By combining gene-editing tools with computational modeling, recent studies tested the advantages of adjacent genes located in pairs and clusters. We propose that with the advancement of gene editing, single-cell sequencing, and imaging tools, one could readily test the functional importance of different coexpression strategies in a variety of biological processes.
Collapse
Affiliation(s)
- Oriana Q H Zinani
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kemal Keseroğlu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ertuğrul M Özbudak
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
45
|
Song Y, Feng L, Alyafei MAM, Jaleel A, Ren M. Function of Chloroplasts in Plant Stress Responses. Int J Mol Sci 2021; 22:ijms222413464. [PMID: 34948261 PMCID: PMC8705820 DOI: 10.3390/ijms222413464] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
The chloroplast has a central position in oxygenic photosynthesis and primary metabolism. In addition to these functions, the chloroplast has recently emerged as a pivotal regulator of plant responses to abiotic and biotic stress conditions. Chloroplasts have their own independent genomes and gene-expression machinery and synthesize phytohormones and a diverse range of secondary metabolites, a significant portion of which contribute the plant response to adverse conditions. Furthermore, chloroplasts communicate with the nucleus through retrograde signaling, for instance, reactive oxygen signaling. All of the above facilitate the chloroplast’s exquisite flexibility in responding to environmental stresses. In this review, we summarize recent findings on the involvement of chloroplasts in plant regulatory responses to various abiotic and biotic stresses including heat, chilling, salinity, drought, high light environmental stress conditions, and pathogen invasions. This review will enrich the better understanding of interactions between chloroplast and environmental stresses, and will lay the foundation for genetically enhancing plant-stress acclimatization.
Collapse
Affiliation(s)
- Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Mohammed Abdul Muhsen Alyafei
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.A.M.A.); (A.J.)
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.A.M.A.); (A.J.)
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-(13)-527313471
| |
Collapse
|
46
|
CAF Proteins Help SOT1 Regulate the Stability of Chloroplast ndhA Transcripts. Int J Mol Sci 2021; 22:ijms222312639. [PMID: 34884441 PMCID: PMC8657633 DOI: 10.3390/ijms222312639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 12/26/2022] Open
Abstract
Protein-mediated RNA stabilization plays profound roles in chloroplast gene expression. Genetic studies have indicated that chloroplast ndhA transcripts, encoding a key subunit of the NADH dehydrogenase-like complex that mediates photosystem I cyclic electron transport and facilitates chlororespiration, are stabilized by PPR53 and its orthologs, but the underlying mechanisms are unclear. Here, we report that CHLOROPLAST RNA SPLICING 2 (CRS2)-ASSOCIATED FACTOR (CAF) proteins activate SUPPRESSOR OF THYLAKOID FORMATION 1 (SOT1), an ortholog of PPR53 in Arabidopsis thaliana, enhancing their affinity for the 5' ends of ndhA transcripts to stabilize these molecules while inhibiting the RNA endonuclease activity of the SOT1 C-terminal SMR domain. In addition, we established that SOT1 improves the splicing efficiency of ndhA by facilitating the association of CAF2 with the ndhA intron, which may be due to the SOT1-mediated stability of the ndhA transcripts. Our findings shed light on the importance of PPR protein interaction partners in moderating RNA metabolism.
Collapse
|
47
|
Cheong MS, Choe H, Jeong MS, Yoon YE, Jung HS, Lee YB. Different Inhibitory Effects of Erythromycin and Chlortetracycline on Early Growth of Brassica campestris Seedlings. Antibiotics (Basel) 2021; 10:antibiotics10101273. [PMID: 34680853 PMCID: PMC8532913 DOI: 10.3390/antibiotics10101273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/14/2023] Open
Abstract
Veterinary antibiotics, including erythromycin (Ery) and chlortetracycline (CTC), are often detected in agricultural land. Although these contaminants affect plant growth and development, their effects on crops remain elusive. In this study, the effects of Ery and CTC on plant growth were investigated and compared by analyzing transcript abundance in Brassica campestris seedlings. Treatment with Ery and/or CTC reduced chlorophyll content in leaves and photosynthetic efficiency. Examination of the chloroplast ultrastructure revealed the presence of abnormally shaped plastids in response to Ery and CTC treatments. The antibiotics produced similar phenotypes of lower accumulation of photosynthetic genes, including RBCL and LHCB1.1. Analysis of the transcript levels revealed that Ery and CTC differentially down-regulated genes involved in the tetrapyrrole biosynthetic pathway and primary root growth. In the presence of Ery and CTC, chloroplasts were undeveloped and photosynthesis efficiency was reduced. These results suggest that both Ery and CTC individually affect gene expression and influence plant physiological activity, independently of one another.
Collapse
Affiliation(s)
- Mi Sun Cheong
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea;
| | - Hyeonji Choe
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea; (M.S.J.); (H.S.J.)
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea
| | - Young-Eun Yoon
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea; (M.S.J.); (H.S.J.)
| | - Yong Bok Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea;
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
- Correspondence: ; Tel.: +82-55-772-1967
| |
Collapse
|
48
|
Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W. Biotechnological Insights on the Expression and Production of Antimicrobial Peptides in Plants. Molecules 2021; 26:4032. [PMID: 34279372 PMCID: PMC8272150 DOI: 10.3390/molecules26134032] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of drug-resistant pathogens poses a serious critical threat to global public health and requires immediate action. Antimicrobial peptides (AMPs) are a class of short peptides ubiquitously found in all living forms, including plants, insects, mammals, microorganisms and play a significant role in host innate immune system. These peptides are considered as promising candidates to treat microbial infections due to its distinct advantages over conventional antibiotics. Given their potent broad spectrum of antimicrobial action, several AMPs are currently being evaluated in preclinical/clinical trials. However, large quantities of highly purified AMPs are vital for basic research and clinical settings which is still a major bottleneck hindering its application. This can be overcome by genetic engineering approaches to produce sufficient amount of diverse peptides in heterologous host systems. Recently plants are considered as potential alternatives to conventional protein production systems such as microbial and mammalian platforms due to their unique advantages such as rapidity, scalability and safety. In addition, AMPs can also be utilized for development of novel approaches for plant protection thereby increasing the crop yield. Hence, in order to provide a spotlight for the expression of AMP in plants for both clinical or agricultural use, the present review presents the importance of AMPs and efforts aimed at producing recombinant AMPs in plants for molecular farming and plant protection so far.
Collapse
Affiliation(s)
| | - Christine Joy I Bulaon
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
49
|
A Transcription Factor Regulates Gene Expression in Chloroplasts. Int J Mol Sci 2021; 22:ijms22136769. [PMID: 34202438 PMCID: PMC8268430 DOI: 10.3390/ijms22136769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
The chloroplast is a semi-autonomous organelle with its own genome. The expression of chloroplast genes depends on both chloroplasts and the nucleus. Although many nucleus-encoded proteins have been shown to localize in chloroplasts and are essential for chloroplast gene expression, it is not clear whether transcription factors can regulate gene expression in chloroplasts. Here we report that the transcription factor NAC102 localizes in both chloroplasts and nucleus in Arabidopsis. Specifically, NAC102 localizes in chloroplast nucleoids. Yeast two-hybrid assay and co-immunoprecipitation assay suggested that NAC102 interacts with chloroplast RNA polymerases. Furthermore, overexpression of NAC102 in chloroplasts leads to reduced chloroplast gene expression and chlorophyll content, indicating that NAC102 functions as a repressor in chloroplasts. Our study not only revealed that transcription factors are new regulators of chloroplast gene expression, but also discovered that transcription factors can function in chloroplasts in addition to the canonical organelle nucleus.
Collapse
|
50
|
Roeber VM, Bajaj I, Rohde M, Schmülling T, Cortleven A. Light acts as a stressor and influences abiotic and biotic stress responses in plants. PLANT, CELL & ENVIRONMENT 2021; 44:645-664. [PMID: 33190307 DOI: 10.1111/pce.13948] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 05/18/2023]
Abstract
Light is important for plants as an energy source and a developmental signal, but it can also cause stress to plants and modulates responses to stress. Excess and fluctuating light result in photoinhibition and reactive oxygen species (ROS) accumulation around photosystems II and I, respectively. Ultraviolet light causes photodamage to DNA and a prolongation of the light period initiates the photoperiod stress syndrome. Changes in light quality and quantity, as well as in light duration are also key factors impacting the outcome of diverse abiotic and biotic stresses. Short day or shady environments enhance thermotolerance and increase cold acclimation. Similarly, shade conditions improve drought stress tolerance in plants. Additionally, the light environment affects the plants' responses to biotic intruders, such as pathogens or insect herbivores, often reducing growth-defence trade-offs. Understanding how plants use light information to modulate stress responses will support breeding strategies to enhance crop stress resilience. This review summarizes the effect of light as a stressor and the impact of the light environment on abiotic and biotic stress responses. There is a special focus on the role of the different light receptors and the crosstalk between light signalling and stress response pathways.
Collapse
Affiliation(s)
- Venja M Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Ishita Bajaj
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Mareike Rohde
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|