1
|
Mascherpa M, Fichera A, Orabona R, Recupero D, Borroni B, Odicino FE, Prefumo F. Inherited episodic ataxia type 2 in pregnancy: A case report. Int J Gynaecol Obstet 2024; 165:387-389. [PMID: 38059694 DOI: 10.1002/ijgo.15292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
SynopsisAn optimal materno‐neonatal outcome was obtained in a pregnancy with inherited episodic ataxia through a multidisciplinary team handling timing and mode of delivery.
Collapse
Affiliation(s)
- Margaret Mascherpa
- Department of Obstetrics and Gynecology, ASST-Spedali Civili, Brescia, Italy
| | - Anna Fichera
- Department of Obstetrics and Gynecology, ASST-Spedali Civili, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Rossana Orabona
- Department of Obstetrics and Gynecology, ASST-Spedali Civili, Brescia, Italy
| | - Daniela Recupero
- Department of Anesthesiology 1, Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Franco Edoardo Odicino
- Department of Obstetrics and Gynecology, ASST-Spedali Civili, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Federico Prefumo
- Obstetrics and Gynecology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
2
|
Audet S, Triassi V, Gelinas M, Legault-Cadieux N, Ferraro V, Duquette A, Tetreault M. Integration of multi-omics technologies for molecular diagnosis in ataxia patients. Front Genet 2024; 14:1304711. [PMID: 38239855 PMCID: PMC10794629 DOI: 10.3389/fgene.2023.1304711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Background: Episodic ataxias are rare neurological disorders characterized by recurring episodes of imbalance and coordination difficulties. Obtaining definitive molecular diagnoses poses challenges, as clinical presentation is highly heterogeneous, and literature on the underlying genetics is limited. While the advent of high-throughput sequencing technologies has significantly contributed to Mendelian disorders genetics, interpretation of variants of uncertain significance and other limitations inherent to individual methods still leaves many patients undiagnosed. This study aimed to investigate the utility of multi-omics for the identification and validation of molecular candidates in a cohort of complex cases of ataxia with episodic presentation. Methods: Eight patients lacking molecular diagnosis despite extensive clinical examination were recruited following standard genetic testing. Whole genome and RNA sequencing were performed on samples isolated from peripheral blood mononuclear cells. Integration of expression and splicing data facilitated genomic variants prioritization. Subsequently, long-read sequencing played a crucial role in the validation of those candidate variants. Results: Whole genome sequencing uncovered pathogenic variants in four genes (SPG7, ATXN2, ELOVL4, PMPCB). A missense and a nonsense variant, both previously reported as likely pathogenic, configured in trans in individual #1 (SPG7: c.2228T>C/p.I743T, c.1861C>T/p.Q621*). An ATXN2 microsatellite expansion (CAG32) in another late-onset case. In two separate individuals, intronic variants near splice sites (ELOVL4: c.541 + 5G>A; PMPCB: c.1154 + 5G>C) were predicted to induce loss-of-function splicing, but had never been reported as disease-causing. Long-read sequencing confirmed the compound heterozygous variants configuration, repeat expansion length, as well as splicing landscape for those pathogenic variants. A potential genetic modifier of the ATXN2 expansion was discovered in ZFYVE26 (c.3022C>T/p.R1008*). Conclusion: Despite failure to identify pathogenic variants through clinical genetic testing, the multi-omics approach enabled the molecular diagnosis in 50% of patients, also giving valuable insights for variant prioritization in remaining cases. The findings demonstrate the value of long-read sequencing for the validation of candidate variants in various scenarios. Our study demonstrates the effectiveness of leveraging complementary omics technologies to unravel the underlying genetics in patients with unresolved rare diseases such as ataxia. Molecular diagnoses not only hold significant promise in improving patient care management, but also alleviates the burden of diagnostic odysseys, more broadly enhancing quality of life.
Collapse
Affiliation(s)
- Sebastien Audet
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Valerie Triassi
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Myriam Gelinas
- Department of Medicine, University of Montreal Hospital Centre (CHUM), Montreal, QC, Canada
| | - Nab Legault-Cadieux
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Vincent Ferraro
- Department of Medicine, University of Montreal Hospital Centre (CHUM), Montreal, QC, Canada
| | - Antoine Duquette
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- Neurology Service, Department of Medicine, André-Barbeau Movement Disorders Unit, University of Montreal Hospital (CHUM), Montreal, QC, Canada
- Genetic Service, Department of Medicine, University of Montreal Hospital (CHUM), Montreal, QC, Canada
| | - Martine Tetreault
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
3
|
Gaudio A, Gotta F, Ponti C, Sanguineri F, Trevisan L, Geroldi A, Patrone S, Gemelli C, Cabona C, Astrea G, Fiorillo C, Gustincich S, Grandis M, Mandich P. Case report: Episodic ataxia without ataxia? Front Neurol 2023; 14:1224241. [PMID: 37965175 PMCID: PMC10640972 DOI: 10.3389/fneur.2023.1224241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
Hereditary myopathies represent a clinically and genetically heterogeneous group of neuromuscular disorders, characterized by highly variable clinical presentations and frequently overlapping phenotypes with other neuromuscular disorders, likely influenced by genetic and environmental modifiers. Genetic testing is often challenging due to ambiguous clinical diagnosis. Here, we present the case of a family with clinical and Electromyography (EMG) features resembling a myotonia-like disorder in which Whole Exome Sequencing (WES) analysis revealed the co-segregation of two rare missense variants in UBR4 and HSPG2, genes previously associated with episodic ataxia 8 (EA8). A review of the literature highlighted a striking overlap between the clinical and the molecular features of our family and the previously described episodic ataxias (EAs), which raises concerns about the genotype-phenotype correlation, clinical variability, and the confounding overlap in these groups of disorders. This emphasizes the importance of thoroughly framing the patient's phenotype. The more clear-cut the diagnosis, the easier the identification of a genetic determinant, and the better the prognosis and the treatment of patients.
Collapse
Affiliation(s)
- Andrea Gaudio
- IRCCS Ospedale Policlinico San Martino—UOC Genetica Medica, Genova, Italy
| | - Fabio Gotta
- IRCCS Ospedale Policlinico San Martino—UOC Genetica Medica, Genova, Italy
| | - Clarissa Ponti
- IRCCS Ospedale Policlinico San Martino—UOC Genetica Medica, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Francesca Sanguineri
- IRCCS Ospedale Policlinico San Martino—UOC Genetica Medica, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Lucia Trevisan
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino—SS Centro Tumori Ereditari, Genova, Italy
| | - Alessandro Geroldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Serena Patrone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Chiara Gemelli
- IRCCS-Ospedale Policlinico San Martino—UOC Clinica Neurologica, Genova, Italy
| | - Corrado Cabona
- IRCCS-Ospedale Policlinico San Martino—UOC Neurofisiopatologia, Genova, Italy
| | | | - Chiara Fiorillo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Istituto Giannina Gaslini—UOC Neuropsichiatria Infantile, Genova, Italy
| | - Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Marina Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS-Ospedale Policlinico San Martino—UOC Clinica Neurologica, Genova, Italy
| | - Paola Mandich
- IRCCS Ospedale Policlinico San Martino—UOC Genetica Medica, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
4
|
Olszewska DA, Shetty A, Rajalingam R, Rodriguez-Antiguedad J, Hamed M, Huang J, Breza M, Rasheed A, Bahr N, Madoev H, Westenberger A, Trinh J, Lohmann K, Klein C, Marras C, Waln O. Genotype-phenotype relations for episodic ataxia genes: MDSGene systematic review. Eur J Neurol 2023; 30:3377-3393. [PMID: 37422902 DOI: 10.1111/ene.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Most episodic ataxias (EA) are autosomal dominantly inherited and characterized by recurrent attacks of ataxia and other paroxysmal and non-paroxysmal features. EA is often caused by pathogenic variants in the CACNA1A, KCNA1, PDHA1, and SLC1A3 genes, listed as paroxysmal movement disorders (PxMD) by the MDS Task Force on the Nomenclature of Genetic Movement Disorders. Little is known about the genotype-phenotype correlation of the different genetic EA forms. METHODS We performed a systematic review of the literature to identify individuals affected by an episodic movement disorder harboring pathogenic variants in one of the four genes. We applied the standardized MDSGene literature search and data extraction protocol to summarize the clinical and genetic features. All data are available via the MDSGene protocol and platform on the MDSGene website (https://www.mdsgene.org/). RESULTS Information on 717 patients (CACNA1A: 491, KCNA1: 125, PDHA1: 90, and SLC1A3: 11) carrying 287 different pathogenic variants from 229 papers was identified and summarized. We show the profound phenotypic variability and overlap leading to the absence of frank genotype-phenotype correlation aside from a few key 'red flags'. CONCLUSION Given this overlap, a broad approach to genetic testing using a panel or whole exome or genome approach is most practical in most circumstances.
Collapse
Affiliation(s)
- Diana Angelika Olszewska
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Aakash Shetty
- Department of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Jon Rodriguez-Antiguedad
- Movement Disorders Unit and Institut d'Investigacions Biomediques-Sant Pau, Hospital Sant Pau, Barcelona, Spain
| | - Moath Hamed
- Department of Neurosciences, NYP Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Jana Huang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | | | - Ashar Rasheed
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Natascha Bahr
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Harutyan Madoev
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Olga Waln
- Houston Methodist Neurological Institute, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
5
|
Erro R, Magrinelli F, Bhatia KP. Paroxysmal movement disorders: Paroxysmal dyskinesia and episodic ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:347-365. [PMID: 37620078 DOI: 10.1016/b978-0-323-98817-9.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Paroxysmal movement disorders have traditionally been classified into paroxysmal dyskinesia (PxD), which consists in attacks of involuntary movements (mainly dystonia and/or chorea) without loss of consciousness, and episodic ataxia (EA), which features spells of cerebellar dysfunction with or without interictal neurological manifestations. In this chapter, PxD will be discussed first according to the trigger-based classification, thus reviewing clinical, genetic, and molecular features of paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. EA will be presented thereafter according to their designated gene or genetic locus. Clinicogenetic similarities among paroxysmal movement disorders have progressively emerged, which are herein highlighted along with growing evidence that their pathomechanisms overlap those of epilepsy and migraine. Advances in our comprehension of the biological pathways underlying paroxysmal movement disorders, which involve ion channels as well as proteins associated with the vesical synaptic cycle or implicated in neuronal energy metabolism, may represent the cornerstone for defining a shared pathophysiologic framework and developing target-specific therapies.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Nielsen EN, Ásbjörnsdóttir B, Møller LB, Nielsen JE, Lindquist SG. Episodic ataxia type 2 (EA2) with interictal myokymia and focal dystonia. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006236. [PMID: 36307210 PMCID: PMC9632360 DOI: 10.1101/mcs.a006236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/14/2022] [Indexed: 01/31/2023] Open
Abstract
Episodic ataxia type 1 and 2 (EA1 and EA2) are the most well-described of the episodic ataxias. They are autosomal dominantly inherited early-onset diseases characterized by attacks of cerebellar dysfunction. EA1 is clinically characterized by short episodes of ataxia with interictal myokymia, whereas EA2 is characterized by longer-lasting recurrent ataxia, slurred speech, and interictal nystagmus. We report on a patient with EA2 with interictal focal dystonia and also interictal myokymia, which is hitherto not reported as an interictal feature associated to EA2. The patient carries a previously described heterozygous pathogenic de novo frameshift variant in the CACNA1A gene, establishing the diagnosis of EA2. She had symptom onset at age 13 and from age 48 she developed interictal myokymia and focal dystonia as illustrated in Supplemental Movie S1. We conclude that interictal myokymia and focal dystonia may be interictal features associated to EA2 caused by the cerebellar pathophysiology of EA2. Episodes of ataxia were successfully treated with acetazolamide in low dose, whereas the interictal features were unresponsive to acetazolamide.
Collapse
Affiliation(s)
- Emilie Neerup Nielsen
- Department of Clinical Genetics, Rigshospitalet, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Birna Ásbjörnsdóttir
- Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Lisbeth Birk Møller
- Department of Clinical Genetics, Rigshospitalet, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Jørgen Erik Nielsen
- Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Denmark;,Department of Clinical Medicine, University of Copenhagen, 2100-Copenhagen, Denmark
| | - Suzanne Granhøj Lindquist
- Department of Clinical Genetics, Rigshospitalet, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Denmark;,Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Denmark;,Department of Clinical Medicine, University of Copenhagen, 2100-Copenhagen, Denmark
| |
Collapse
|
7
|
Serrallach BL, Orman G, Boltshauser E, Hackenberg A, Desai NK, Kralik SF, Huisman TAGM. Neuroimaging in cerebellar ataxia in childhood: A review. J Neuroimaging 2022; 32:825-851. [PMID: 35749078 DOI: 10.1111/jon.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
Ataxia is one of the most common pediatric movement disorders and can be caused by a large number of congenital and acquired diseases affecting the cerebellum or the vestibular or sensory system. It is mainly characterized by gait abnormalities, dysmetria, intention tremor, dysdiadochokinesia, dysarthria, and nystagmus. In young children, ataxia may manifest as the inability or refusal to walk. The diagnostic approach begins with a careful clinical history including the temporal evolution of ataxia and the inquiry of additional symptoms, is followed by a meticulous physical examination, and, depending on the results, is complemented by laboratory assays, electroencephalography, nerve conduction velocity, lumbar puncture, toxicology screening, genetic testing, and neuroimaging. Neuroimaging plays a pivotal role in either providing the final diagnosis, narrowing the differential diagnosis, or planning targeted further workup. In this review, we will focus on the most common form of ataxia in childhood, cerebellar ataxia (CA). We will discuss and summarize the neuroimaging findings of either the most common or the most important causes of CA in childhood or present causes of pediatric CA with pathognomonic findings on MRI. The various pediatric CAs will be categorized and presented according to (a) the cause of ataxia (acquired/disruptive vs. inherited/genetic) and (b) the temporal evolution of symptoms (acute/subacute, chronic, progressive, nonprogressive, and recurrent). In addition, several illustrative cases with their key imaging findings will be presented.
Collapse
Affiliation(s)
- Bettina L Serrallach
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Gunes Orman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annette Hackenberg
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nilesh K Desai
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Stephen F Kralik
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Thierry A G M Huisman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Fedorenko OY, Paderina DZ, Kornetova EG, Poltavskaya EG, Pozhidaev IV, Goncharova AA, Freidin MB, Bocharova AV, Bokhan NA, Loonen AJM, Ivanova SA. Genes of the Glutamatergic System and Tardive Dyskinesia in Patients with Schizophrenia. Diagnostics (Basel) 2022; 12:diagnostics12071521. [PMID: 35885427 PMCID: PMC9322868 DOI: 10.3390/diagnostics12071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Tardive dyskinesia (TD) is an extrapyramidal side effect of the long-term use of antipsychotics. In the present study, the role of glutamatergic system genes in the pathogenesis of total TD, as well as two phenotypic forms, orofacial TD and limb-truncal TD, was studied. Methods: A set of 46 SNPs of the glutamatergic system genes (GRIN2A, GRIN2B, GRIK4, GRM3, GRM7, GRM8, SLC1A2, SLC1A3, SLC17A7) was studied in a population of 704 Caucasian patients with schizophrenia. Genotyping was performed using the MassARRAY Analyzer 4 (Agena Bioscience™). Logistic regression analysis was performed to test for the association of TD with the SNPs while adjusting for confounders. Results: No statistically significant associations between the SNPs and TD were found after adjusting for multiple testing. Since three SNPs of the SLC1A2 gene demonstrated nominally significant associations, we carried out a haplotype analysis for these SNPs. This analysis identified a risk haplotype for TD comprising CAT alleles of the SLC1A2 gene SNPs rs1042113, rs10768121, and rs12361171. Nominally significant associations were identified for SLC1A3 rs2229894 and orofacial TD, as well as for GRIN2A rs7192557 and limb-truncal TD. Conclusions: Genes encoding for mGlu3, EAAT2, and EAAT1 may be involved in the development of TD in schizophrenia patients.
Collapse
Affiliation(s)
- Olga Yu. Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.Y.F.); (D.Z.P.); (E.G.K.); (E.G.P.); (I.V.P.); (A.A.G.); (N.A.B.); (S.A.I.)
| | - Diana Z. Paderina
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.Y.F.); (D.Z.P.); (E.G.K.); (E.G.P.); (I.V.P.); (A.A.G.); (N.A.B.); (S.A.I.)
| | - Elena G. Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.Y.F.); (D.Z.P.); (E.G.K.); (E.G.P.); (I.V.P.); (A.A.G.); (N.A.B.); (S.A.I.)
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeniya G. Poltavskaya
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.Y.F.); (D.Z.P.); (E.G.K.); (E.G.P.); (I.V.P.); (A.A.G.); (N.A.B.); (S.A.I.)
| | - Ivan V. Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.Y.F.); (D.Z.P.); (E.G.K.); (E.G.P.); (I.V.P.); (A.A.G.); (N.A.B.); (S.A.I.)
| | - Anastasiia A. Goncharova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.Y.F.); (D.Z.P.); (E.G.K.); (E.G.P.); (I.V.P.); (A.A.G.); (N.A.B.); (S.A.I.)
| | - Maxim B. Freidin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (M.B.F.); (A.V.B.)
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Anna V. Bocharova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (M.B.F.); (A.V.B.)
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.Y.F.); (D.Z.P.); (E.G.K.); (E.G.P.); (I.V.P.); (A.A.G.); (N.A.B.); (S.A.I.)
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Anton J. M. Loonen
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
- Correspondence:
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.Y.F.); (D.Z.P.); (E.G.K.); (E.G.P.); (I.V.P.); (A.A.G.); (N.A.B.); (S.A.I.)
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
9
|
Koźmiński W, Pera J. Involvement of the Peripheral Nervous System in Episodic Ataxias. Biomedicines 2020; 8:biomedicines8110448. [PMID: 33105744 PMCID: PMC7690566 DOI: 10.3390/biomedicines8110448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/04/2022] Open
Abstract
Episodic ataxias comprise a group of inherited disorders, which have a common hallmark—transient attacks of ataxia. The genetic background is heterogeneous and the causative genes are not always identified. Furthermore, the clinical presentation, including intraictal and interictal symptoms, as well as the retention and progression of neurological deficits, is heterogeneous. Spells of ataxia can be accompanied by other symptoms—mostly from the central nervous system. However, in some of episodic ataxias involvement of peripheral nervous system is a part of typical clinical picture. This review intends to provide an insight into involvement of peripheral nervous system in episodic ataxias.
Collapse
Affiliation(s)
- Wojciech Koźmiński
- Department of Neurology, University Hospital, ul. Jakubowskiego 2, 30-688 Krakow, Poland;
| | - Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503 Krakow, Poland
- Correspondence:
| |
Collapse
|