1
|
Zhang Q, Xie S, Zhong Q, Zhang X, Luo L, Yang Q. Bacillus subtilis-Derived Surfactin Alleviates Offspring Intestinal Inflammatory Injuries Through Breast Milk. Nutrients 2025; 17:1009. [PMID: 40290006 PMCID: PMC11945067 DOI: 10.3390/nu17061009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Enteric and diarrheal diseases pose a significant threat to infant health, highlighting the importance of immune defenses in early life, especially maternal protection, in establishing a robust gastrointestinal environment. Surfactin, a bioactive peptide from Bacillus subtilis, has immunomodulatory properties, yet its influence on offspring via maternal gut interference is not fully understood. This study examines the effects of maternal surfactin consumption on breast milk's immunological properties and its consequent effects on neonatal intestinal health. METHODS Twenty-eight gravid mice were randomly categorized into two cohorts and were given surfactin or not in drinking water from one week after conception to 21 days postpartum. Cross-fostering experiments were conducted within 12 h after birth. Pups from the surfactin-supplemented dams were fostered and nursed by the control dams, while the pups from the control dams were nursed by the surfactin-supplemented dams. RESULTS The findings show that the pups from the surfactin-supplemented dams had increased body weight, improved intestinal morphology with longer villus and deeper crypts, the upregulation of genes related to mucins and antimicrobial peptides, and an increase in IgA+ and CD3+ T cells within the intestinal mucosa. Further, the cross-fostering experiments suggested that the pups nursed by the surfactin-supplemented dams gained more weight, had less intestinal damage, less inflammation, and lower oxidative stress levels induced by Salmonella typhimurium, indicating the immunological benefits of surfactin conveyed through breast milk. Additionally, the expression of pro-inflammatory factors, including nitric oxide, TNF-α, IL-1β, IL-6, MCP-1, and ROS, induced by LPS in the macrophages was significantly inhibited with milk from the surfactin-supplemented dam (MSD) treatment. Interestingly, the MSD treatment induced a shift in macrophage polarization from pro-inflammatory (M1-like) to anti-inflammatory (M2-like), evidenced by the decreased expression of IL-12p40 and iNOS and the increased expression of CD206, TGF-β, and Arg-1. In terms of mechanism, surfactin improved the contents of the anti-inflammatory factors IL-4, IL-10, and TGF-β in the breast milk. CONCLUSIONS This research contributes to understanding how maternal interference can modulate breast milk composition, influence infant gastrointestinal development and immunity, and provide nutritional strategy insights.
Collapse
Affiliation(s)
| | | | | | | | | | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; (Q.Z.); (S.X.); (Q.Z.); (X.Z.); (L.L.)
| |
Collapse
|
2
|
Flemming HC, van Hullebusch ED, Little BJ, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. Microbial extracellular polymeric substances in the environment, technology and medicine. Nat Rev Microbiol 2025; 23:87-105. [PMID: 39333414 DOI: 10.1038/s41579-024-01098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/29/2024]
Abstract
Microbial biofilms exhibit a self-produced matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA and lipids. EPS promote interactions of the biofilm with other cells and sorption of organics, metals and chemical pollutants, and they facilitate cell adhesion at interfaces and ensure matrix cohesion. EPS have roles in various natural environments, such as soils, sediments and marine habitats. In addition, EPS are relevant in technical environments, such as wastewater and drinking water treatment facilities, and water distribution systems, and they contribute to biofouling and microbially influenced corrosion. In medicine, EPS protect pathogens within the biofilm against the host immune system and antimicrobials, and emerging evidence suggests that EPS can represent potential virulence factors. By contrast, EPS yield a wide range of valuable products that include their role in self-repairing concrete. In this Review, we aim to explore EPS as a functional unit of biofilms in the environment, in technology and in medicine.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
- Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.
| | | | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, the Ohio State University, Columbus, OH, USA
- National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, UK
| | - Jost Wingender
- University of Duisburg-Essen, Faculty of Chemistry, Environmental Microbiology and Biotechnology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2024:1-22. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Cesaria M, Calcagnile M, Arima V, Bianco M, Alifano P, Cataldo R. Cyclic olefin copolymer (COC) as a promising biomaterial for affecting bacterial colonization: investigation on Vibrio campbellii. Int J Biol Macromol 2024; 271:132550. [PMID: 38782326 DOI: 10.1016/j.ijbiomac.2024.132550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Cyclic olefin copolymer (COC) has emerged as an interesting biocompatible material for Organ-on-a-Chip (OoC) devices monitoring growth, viability, and metabolism of cells. Despite ISO 10993 approval, systematic investigation of bacteria grown onto COC is a still not documented issue. This study discusses biofilm formations of the canonical wild type BB120 Vibrio campbellii strain on a native COC substrate and addresses the impact of the physico-chemical properties of COC compared to conventional hydroxyapatite (HA) and poly(dimethylsiloxane) (PDMS) surfaces. An interdisciplinary approach combining bacterial colony counting, light microscopy imaging and advanced digital image processing remarks interesting results. First, COC can reduce biomass adhesion with respect to common biopolymers, that is suitable for tuning biofilm formations in the biological and medical areas. Second, remarkably different biofilm morphology (dendritic complex patterns only in the case of COC) was observed among the examined substrates. Third, the observed biofilm morphogenesis was related to the interaction of COC with the conditioning layer of the planktonic biological medium. Fourth, Level Co-occurrence Matrix (CGLM)-based analysis enabled quantitative assessment of the biomass textural fractal development under different coverage conditions. All of this is of key practical relevance in searching innovative biocompatible materials for pharmaceutical, implantable and medical products.
Collapse
Affiliation(s)
- Maura Cesaria
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Campus Ecotekne, Via per Arnesano, 73100 Lecce, Italy.
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.BA.), University of Salento, c/o Campus Ecotekne-S.P. 6, 73100 Lecce, Italy
| | - Valentina Arima
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Monica Bianco
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.BA.), University of Salento, c/o Campus Ecotekne-S.P. 6, 73100 Lecce, Italy
| | - Rosella Cataldo
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Campus Ecotekne, Via per Arnesano, 73100 Lecce, Italy
| |
Collapse
|
5
|
Paulovičová E, Paulovičová L, Poláková M. Glycolipids mimicking biosurfactants of the synthetic origin as new immunomodulating and anticandidal derivatives. Carbohydr Res 2023; 534:108978. [PMID: 37944383 DOI: 10.1016/j.carres.2023.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
The immunobiological effectivity of glycolipids mimicking biosurfactants of the synthetic origin was followed up using macrophages cell line RAW264.7. These derivatives with different number of mannose units connected glycosidically or through triazole linker, and all having octyl aglycone, were evaluated with respect to their structure - immunomodulation activity relationship. This comparative study showed that the structural variations of the selected derivatives influenced the immunobiological cell behaviour as concerned pro-inflammatory TNF-α, IL-6, IL-1α, IL-17, IL-12 and anti-inflammatory IL-10 cytokines production and enhancement of RAW264.7 cell proliferation. The derivatives with mannose units linked through triazole linkers exerted in some cases stronger immunomodulative potency than (di)mannosides. On the other hand, a presence of triazole linker is a less favourable for an effective candidacidal activity as determined by in vitro using Candida albicans biofilm. The design of new defined immunomodulating formulas of the synthetic origin as possible antifungal agents and prospective participants in drug delivery systems may be of interest.
Collapse
Affiliation(s)
- Ema Paulovičová
- Dept.Glycomaterials, Immunol. & Cell Culture Labs, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
| | - Lucia Paulovičová
- Dept.Glycomaterials, Immunol. & Cell Culture Labs, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia
| | - Monika Poláková
- Dept. of Glycochemistry, Lab. Sugars & Glycomimics, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
| |
Collapse
|
6
|
Hegde A, Kabra S, Basawa RM, Khile DA, Abbu RUF, Thomas NA, Manickam NB, Raval R. Bacterial diseases in marine fish species: current trends and future prospects in disease management. World J Microbiol Biotechnol 2023; 39:317. [PMID: 37743401 PMCID: PMC10518295 DOI: 10.1007/s11274-023-03755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
The fisheries sub-sector of aquaculture-i.e., the pisciculture industry, contributes significantly to a country's economy, employing a sizable proportion of the population. It also makes important contributions to household food security because the current demand for animal protein cannot be fulfilled by harvesting wild fish from riverines, lakes, dams, and oceans. For good pond management techniques and sustaining fish health, the fisherfolk, and the industry require well-established regulatory structures, efficient disease management strategies, and other extended services. In rearing marine fish, infections resulting from disease outbreaks are a weighty concern because they can cause considerable economic loss due to morbidity and mortality. Consequently, to find effective solutions for the prevention and control of the major diseases limiting fish production in aquaculture, multidisciplinary studies on the traits of potential fish pathogens, the biology of the fish as hosts, and an adequate understanding of the global environmental factors are fundamental. This review highlights the various bacterial diseases and their causative pathogens prevalent in the pisciculture industry and the current solutions while emphasising marine fish species. Given that preexisting methods are known to have several disadvantages, other sustainable alternatives like antimicrobial peptides, synthetic peptides, probiotics, and medicinal treatments have emerged to be an enormous potential solution to these challenges.
Collapse
Affiliation(s)
- Avani Hegde
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Suhani Kabra
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Renuka Manjunath Basawa
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Dnyanada Anil Khile
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Rahil Ummar Faruk Abbu
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Naomi Ann Thomas
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Nava Bharati Manickam
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Freitas-Silva J, de Oliveira BFR, Dias GR, de Carvalho MM, Laport MS. Unravelling the sponge microbiome as a promising source of biosurfactants. Crit Rev Microbiol 2023; 49:101-116. [PMID: 35176944 DOI: 10.1080/1040841x.2022.2037507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microbial surfactants are particularly useful in bioremediation and heavy metal removal from soil and aquatic environments, amongst other highly valued uses in different economic and biomedical sectors. Marine sponge-associated bacteria are well-known producers of bioactive compounds with a wide array of potential applications. However, little progress has been made on investigating biosurfactants produced by these bacteria, especially when compared with other groups of biologically active molecules harnessed from the sponge microbiome. Using a thorough literature search in eight databases, the purpose of the review was to compile the current knowledge on biosurfactants from sponge-associated bacteria, with a focus on their relevant biotechnological applications. From the publications between the years 1995 and 2021, lipopeptides and glycolipids were the most identified chemical classes of biosurfactants. Firmicutes was the dominant phylum of biosurfactant-producing strains, followed by Actinobacteria and Proteobacteria. Bioremediation led as the most promising application field for the studied surface-active molecules in sponge-derived bacteria, despite the reports endorsed their use as antimicrobial and antibiofilm agents. Finally, we appoint some key strategies to instigate the research appetite on the isolation and characterization of novel biosurfactants from the poriferan microbiome.
Collapse
Affiliation(s)
- Jéssyca Freitas-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Gabriel Rodrigues Dias
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Floris R, Sanna G, Mura L, Fiori M, Culurgioni J, Diciotti R, Rizzo C, Lo Giudice A, Laganà P, Fois N. Isolation and Identification of Bacteria with Surface and Antibacterial Activity from the Gut of Mediterranean Grey Mullets. Microorganisms 2021; 9:microorganisms9122555. [PMID: 34946156 PMCID: PMC8703445 DOI: 10.3390/microorganisms9122555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
Fish gut represents a peculiar ecological niche where bacteria can transit and reside to play vital roles by producing bio-compounds with nutritional, immunomodulatory and other functions. This complex microbial ecosystem reflects several factors (environment, feeding regimen, fish species, etc.). The objective of the present study was the identification of intestinal microbial strains able to produce molecules called biosurfactants (BSs), which were tested for surface and antibacterial activity in order to select a group of probiotic bacteria for aquaculture use. Forty-two bacterial isolates from the digestive tracts of twenty Mediterranean grey mullets were screened for testing emulsifying (E-24), surface and antibiotic activities. Fifty percent of bacteria, ascribed to Pseudomonas aeruginosa, Pseudomonas sp., P. putida and P. anguilliseptica, P. stutzeri, P. protegens and Enterobacter ludwigii were found to be surfactant producers. Of the tested strains, 26.6% exhibited an antibacterial activity against Staphylococcus aureus (10.0 ± 0.0–14.5 ± 0.7 mm inhibition zone), and among them, 23.3% of isolates also showed inhibitory activity vs. Proteus mirabilis (10.0 ± 0.0–18.5 ± 0.7 mm inhibition zone) and 6.6% vs. Klebsiella pneumoniae (11.5 ± 0.7–17.5 ± 0.7 mm inhibition zone). According to preliminary chemical analysis, the bioactive compounds are suggested to be ascribed to the class of glycolipids. This works indicated that fish gut is a source of bioactive compounds which deserves to be explored.
Collapse
Affiliation(s)
- Rosanna Floris
- AGRIS-Sardegna, Agricultural Research Agency of Sardinia, Bonassai, 07100 Sassari, Italy; (G.S.); (L.M.); (M.F.); (J.C.); (R.D.); (N.F.)
- Correspondence: ; Tel.: +39-079-284-2331
| | - Gabriele Sanna
- AGRIS-Sardegna, Agricultural Research Agency of Sardinia, Bonassai, 07100 Sassari, Italy; (G.S.); (L.M.); (M.F.); (J.C.); (R.D.); (N.F.)
| | - Laura Mura
- AGRIS-Sardegna, Agricultural Research Agency of Sardinia, Bonassai, 07100 Sassari, Italy; (G.S.); (L.M.); (M.F.); (J.C.); (R.D.); (N.F.)
| | - Myriam Fiori
- AGRIS-Sardegna, Agricultural Research Agency of Sardinia, Bonassai, 07100 Sassari, Italy; (G.S.); (L.M.); (M.F.); (J.C.); (R.D.); (N.F.)
| | - Jacopo Culurgioni
- AGRIS-Sardegna, Agricultural Research Agency of Sardinia, Bonassai, 07100 Sassari, Italy; (G.S.); (L.M.); (M.F.); (J.C.); (R.D.); (N.F.)
| | - Riccardo Diciotti
- AGRIS-Sardegna, Agricultural Research Agency of Sardinia, Bonassai, 07100 Sassari, Italy; (G.S.); (L.M.); (M.F.); (J.C.); (R.D.); (N.F.)
| | - Carmen Rizzo
- Stazione Zoologica Anton Dohrn-Ecosustainable Marine Biotechnology Department, Sicily Marine Centre, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy;
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy;
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica 3p, AOU ‘G. Martino, Via C. Valeria, s.n.c., 98125 Messina, Italy;
| | - Nicola Fois
- AGRIS-Sardegna, Agricultural Research Agency of Sardinia, Bonassai, 07100 Sassari, Italy; (G.S.); (L.M.); (M.F.); (J.C.); (R.D.); (N.F.)
| |
Collapse
|
9
|
Combining OSMAC Approach and Untargeted Metabolomics for the Identification of New Glycolipids with Potent Antiviral Activity Produced by a Marine Rhodococcus. Int J Mol Sci 2021; 22:ijms22169055. [PMID: 34445761 PMCID: PMC8396431 DOI: 10.3390/ijms22169055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022] Open
Abstract
Natural products of microbial origin have inspired most of the commercial pharmaceuticals, especially those from Actinobacteria. However, the redundancy of molecules in the discovery process represents a serious issue. The untargeted approach, One Strain Many Compounds (OSMAC), is one of the most promising strategies to induce the expression of silent genes, especially when combined with genome mining and advanced metabolomics analysis. In this work, the whole genome of the marine isolate Rhodococcus sp. I2R was sequenced and analyzed by antiSMASH for the identification of biosynthetic gene clusters. The strain was cultivated in 22 different growth media and the generated extracts were subjected to metabolomic analysis and functional screening. Notably, only a single growth condition induced the production of unique compounds, which were partially purified and structurally characterized by liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). This strategy led to identifying a bioactive fraction containing >30 new glycolipids holding unusual functional groups. The active fraction showed a potent antiviral effect against enveloped viruses, such as herpes simplex virus and human coronaviruses, and high antiproliferative activity in PC3 prostate cancer cell line. The identified compounds belong to the biosurfactants class, amphiphilic molecules, which play a crucial role in the biotech and biomedical industry.
Collapse
|
10
|
Ceresa C, Fracchia L, Fedeli E, Porta C, Banat IM. Recent Advances in Biomedical, Therapeutic and Pharmaceutical Applications of Microbial Surfactants. Pharmaceutics 2021; 13:466. [PMID: 33808361 PMCID: PMC8067001 DOI: 10.3390/pharmaceutics13040466] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
The spread of antimicrobial-resistant pathogens typically existing in biofilm formation and the recent COVID-19 pandemic, although unrelated phenomena, have demonstrated the urgent need for methods to combat such increasing threats. New avenues of research for natural molecules with desirable properties to alleviate this situation have, therefore, been expanding. Biosurfactants comprise a group of unique and varied amphiphilic molecules of microbial origin capable of interacting with lipidic membranes/components of microorganisms and altering their physicochemical properties. These features have encouraged closer investigations of these microbial metabolites as new pharmaceutics with potential applications in clinical, hygiene and therapeutic fields. Mounting evidence has indicated that biosurfactants have antimicrobial, antibiofilm, antiviral, immunomodulatory and antiproliferative activities that are exploitable in new anticancer treatments and wound healing applications. Some biosurfactants have already been approved for use in clinical, food and environmental fields, while others are currently under investigation and development as antimicrobials or adjuvants to antibiotics for microbial suppression and biofilm eradication strategies. Moreover, due to the COVID-19 pandemic, biosurfactants are now being explored as an alternative to current products or procedures for effective cleaning and handwash formulations, antiviral plastic and fabric surface coating agents for shields and masks. In addition, biosurfactants have shown promise as drug delivery systems and in the medicinal relief of symptoms associated with SARS-CoV-2 acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Emanuele Fedeli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK;
| |
Collapse
|