1
|
Gopalakrishnan M, Kao-ian W, Rittiruam M, Praserthdam S, Praserthdam P, Limphirat W, Nguyen MT, Yonezawa T, Kheawhom S. 3D Hierarchical MOF-Derived Defect-Rich NiFe Spinel Ferrite as a Highly Efficient Electrocatalyst for Oxygen Redox Reactions in Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11537-11551. [PMID: 38361372 PMCID: PMC11184548 DOI: 10.1021/acsami.3c17789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The strategy of defect engineering is increasingly recognized for its pivotal role in modulating the electronic structure, thereby significantly improving the electrocatalytic performance of materials. In this study, we present defect-enriched nickel and iron oxides as highly active and cost-effective electrocatalysts, denoted as Ni0.6Fe2.4O4@NC, derived from NiFe-based metal-organic frameworks (MOFs) for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER). XANES and EXAFS confirm that the crystals have a distorted structure and metal vacancies. The cation defect-rich Ni0.6Fe2.4O4@NC electrocatalyst exhibits exceptional ORR and OER activities (ΔE = 0.68 V). Mechanistic pathways of electrochemical reactions are studied by DFT calculations. Furthermore, a rechargeable zinc-air battery (RZAB) using the Ni0.6Fe2.4O4@NC catalyst demonstrates a peak power density of 187 mW cm-2 and remarkable long-term cycling stability. The flexible solid-state ZAB using the Ni0.6Fe2.4O4@NC catalyst exhibits a power density of 66 mW cm-2. The proposed structural design strategy allows for the rational design of electronic delocalization of cation defect-rich NiFe spinel ferrite attached to ultrathin N-doped graphitic carbon sheets in order to enhance active site availability and facilitate mass and electron transport.
Collapse
Affiliation(s)
- Mohan Gopalakrishnan
- Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wathanyu Kao-ian
- Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Meena Rittiruam
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand
- High-Performance
Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic
Reaction Engineering (CECC), Chulalongkorn
University, Bangkok 10330, Thailand
- Rittiruam
Research Group, Bangkok 10330, Thailand
| | - Supareak Praserthdam
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand
- High-Performance
Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic
Reaction Engineering (CECC), Chulalongkorn
University, Bangkok 10330, Thailand
| | - Piyasan Praserthdam
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanwisa Limphirat
- Synchrotron
Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Mai Thanh Nguyen
- Division
of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Tetsu Yonezawa
- Division
of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Soorathep Kheawhom
- Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Bio-Circular-Green-economy
Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Kwarteng PK, Syahputra S, Pasquini L, Vacandio F, Di Vona ML, Knauth P. Electrodeposited Ionomer Protection Layer for Negative Electrodes in Zinc-Air Batteries. MEMBRANES 2023; 13:680. [PMID: 37505046 PMCID: PMC10385867 DOI: 10.3390/membranes13070680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
The protection of zinc anodes in zinc-air batteries (ZABs) is an efficient way to reduce corrosion and Zn dendrite formation and improve cyclability and battery efficiency. Anion-conducting poly(N-vinylbenzyl N,N,N-trimethylammonium)chloride (PVBTMA) thin films were electrodeposited directly on zinc metal using cyclic voltammetry. This deposition process presents a combination of advantages, including selective anion transport in PVBTMA reducing zinc crossover, high interface quality by electrodeposition improving the corrosion protection of zinc and high ionomer stiffness opposing zinc dendrite perforation. The PVBTMA layer was observed by optical and electron microscopy, and the wettability of the ionomer-coated surface was investigated by contact angle measurements. ZABs with PVBTMA-coated Zn showed an appreciable and stable open-circuit voltage both in alkaline electrolyte (1.55 V with a Pt cathode) and in miniaturized batteries (1.31 V with a carbon paper cathode). Cycling tests at 0.5 mA/cm2 within voltage limits of 2.1 and 0.8 V gave a stable discharge capacity for nearly 100 cycles with a liquid electrolyte and more than 20 cycles in miniaturized batteries. The faster degradation of the latter ZAB was attributed to the clogging of the carbon air cathode and drying or carbonation of the electrolyte sorbed in a Whatman paper.
Collapse
Affiliation(s)
- Papa K Kwarteng
- Aix Marseille Univ, CNRS, MADIREL (UMR 7246), Electrochemistry of Materials Group, Campus St Jérôme, 13013 Marseille, France
| | - Suanto Syahputra
- Aix Marseille Univ, CNRS, MADIREL (UMR 7246), Electrochemistry of Materials Group, Campus St Jérôme, 13013 Marseille, France
| | - Luca Pasquini
- Aix Marseille Univ, CNRS, MADIREL (UMR 7246), Electrochemistry of Materials Group, Campus St Jérôme, 13013 Marseille, France
| | - Florence Vacandio
- Aix Marseille Univ, CNRS, MADIREL (UMR 7246), Electrochemistry of Materials Group, Campus St Jérôme, 13013 Marseille, France
| | - Maria Luisa Di Vona
- Tor Vergata University of Rome, Department Industrial Engineering, Via del Politecnico 1, 00173 Roma, Italy
| | - Philippe Knauth
- Aix Marseille Univ, CNRS, MADIREL (UMR 7246), Electrochemistry of Materials Group, Campus St Jérôme, 13013 Marseille, France
| |
Collapse
|
3
|
Khezri R, Parnianifard A, Motlagh SR, Etesami M, Lao-atiman W, Abbasi A, Arpornwichanop A, Mohamad AA, Olaru S, Kheawhom S. Performance enhancement through parameter optimization for a rechargeable zinc-air flow battery. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Development of electrolytes for rechargeable zinc-air batteries: current progress, challenges, and future outlooks. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
AbstractThis review presents the current developments of various electrolyte systems for secondary zinc air batteries (SZABs). The challenges and advancements in aqueous electrolytes (e.g., alkaline, acidic and neutral) and non-aqueous electrolytes (e.g., solid polymer electrolyte, ionic liquids, gel polymer electrolyte, and deep eutectic solvents) development have been reviewed. Moreover, chemical and physical characteristics of electrolytes such as power density, capacity, rate performance, cyclic ability, and safety that play a vital role in recital of the SZABs have been reviewed. Finally, the challenges and limitations that must be investigated and possible future research areas of SZABs electrolytes are discussed.
Collapse
|
5
|
Liu Y, Li L, Ji X, Cheng S. Scientific Challenges and Improvement Strategies of Zn-Based Anodes for Aqueous Zn-Ion Batteries. CHEM REC 2022; 22:e202200114. [PMID: 35785428 DOI: 10.1002/tcr.202200114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/11/2022] [Indexed: 12/16/2022]
Abstract
Aqueous zinc-ion batteries (ZIBs) have attracted widespread attention due to the intrinsic features of Zn-based anodes, mainly including high capacity, low cost, and low working potential together with high over-potential for hydrogen evolution reaction. Aqueous ZIBs are considered to be strong competitors and substitutes for lead-acid, nickel-metal hydrogen, nickel-cadmium, and even lithium-ion batteries. Great efforts have been made in the past few years towards the issues existed in aqueous ZIBs, mainly including alkaline and mild acidic systems. In this perspective, we illustrate the advantages, the main challenges, and the corresponding solution strategies of Zn-based anodes in various aqueous rechargeable ZIBs with alkaline and mild acidic electrolytes. Furthermore, feasible aqueous ZIBs for practical use are prospected.
Collapse
Affiliation(s)
- Yuxiu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Luping Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xu Ji
- College of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Shuang Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
6
|
Bhardwaj U, Sharma A, Gupta V, Batoo KM, Hussain S, Kushwaha HS. High energy storage capabilities of CaCu 3Ti 4O 12 for paper-based zinc-air battery. Sci Rep 2022; 12:3999. [PMID: 35256700 PMCID: PMC8901635 DOI: 10.1038/s41598-022-07858-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Zinc–air batteries proffer high energy density and cyclic stability at low costs but lack disadvantages like sluggish reactions at the cathode and the formation of by-products at the cathode. To resolve these issues, a new perovskite material, CaCu3Ti4O12 (CCTO), is proposed as an efficacious electrocatalyst for oxygen evolution/reduction reactions to develop zinc–air batteries (ZAB). Synthesis of this material adopted an effective oxalate route, which led to the purity in the electrocatalyst composition. The CCTO material is a proven potential candidate for energy applications because of its high dielectric permittivity (ε) and occupies an improved ORR-OER activity with better onset potential, current density, and stability. The Tafel value for CCTO was obtained out to be 80 mV dec−1. The CCTO perovskite was also evaluated for the zinc–air battery as an air electrode, corresponding to the high specific capacitance of 801 mAh g−1 with the greater cyclic efficiency and minimum variations in both charge/discharge processes. The highest power density (Pmax) measured was 127 mW cm−2. Also, the CCTO based paper battery shows an excellent performance achieving a specific capacity of 614 mAh g−1. The obtained results promise CCTO as a potential and cheap electrocatalyst for energy applications.
Collapse
Affiliation(s)
- Upasana Bhardwaj
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Aditi Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Vinay Gupta
- Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Khalid Mujasam Batoo
- College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Sajjad Hussain
- Graphene Research Institute and Institute of Nano and Advanced Materials Engineering, Sejong University, Seoul, 143-747, Republic of Korea
| | - H S Kushwaha
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India.
| |
Collapse
|
7
|
Mikhailov OV. The Physical Chemistry and Chemical Physics (PCCP) Section of the International Journal of Molecular Sciences in Its Publications: The First 300 Thematic Articles in the First 3 Years. Int J Mol Sci 2021; 23:241. [PMID: 35008667 PMCID: PMC8745423 DOI: 10.3390/ijms23010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The Physical Chemistry and Chemical Physics Section (PCCP Section) is one of the youngest among the sections of the International Journal of Molecular Sciences (IJMS)-the year 2021 will only mark three years since its inception [...].
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
8
|
Progress in Development of Nanostructured Manganese Oxide as Catalyst for Oxygen Reduction and Evolution Reaction. ENERGIES 2021. [DOI: 10.3390/en14196385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rise in energy consumption is largely driven by the growth of population. The supply of energy to meet that demand can be fulfilled by slowly introducing energy from renewable resources. The fluctuating nature of the renewable energy production (i.e., affected by weather such as wind, sun light, etc.), necessitates the increasing demand in developing electricity storage systems. Reliable energy storage system will also play immense roles to support activities related to the internet of things. In the past decades, metal-air batteries have attracted great attention and interest for their high theoretical capacity, environmental friendliness, and their low cost. However, one of the main challenges faced in metal-air batteries is the slow rate of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) that affects the charging and the discharging performance. Various types of nanostructure manganese oxide with high specific surface area and excellent catalytic properties have been synthesized and studied. This review provides a discussion of the recent developments of the nanostructure manganese oxide and their performance in oxygen reduction and oxygen evolution reactions in alkaline media. It includes the experimental work in the nanostructure of manganese oxide, but also the fundamental understanding of ORR and OER. A brief discussion on electrocatalyst kinetics including the measurement and criteria for the ORR and the OER is also included. Finally, recently reported nanostructure manganese oxide catalysts are also discussed.
Collapse
|
9
|
Hosseini S, Liu ZY, Chuan CT, Soltani S, Lanjapalli V, Li YY. The role of SO-group-based additives in improving the rechargeable aluminium-air batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|