1
|
El-Sarnagawy GN, Hafez AS, Ghonem MM. Role of serum glucose/potassium ratio in assessing poisoning severity and adverse outcomes in patients with acute aluminum phosphide poisoning. Toxicol Rep 2025; 14:101947. [PMID: 40026479 PMCID: PMC11872125 DOI: 10.1016/j.toxrep.2025.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Aluminum phosphide (ALP) poisoning is a crucial health problem owing to its easy availability, extreme potency, and absence of specific treatment modalities. This study aimed to assess the role of the glucose/potassium (Glu-K) ratio in predicting the severity and adverse outcomes of acute ALP poisoning. The current retrospective cohort study involved patients with acute ALP poisoning who were admitted to Tanta University Poison Control Center from June 2022 to June 2024. Sociodemographic and poisoning data, initial findings of clinical examination, Glu-K ratio, and calculation of Poisoning Severity Score (PSS), Acute Physiology and Chronic Health Evaluation II (APACHE II), and PGI score were documented. Patients were categorized into two groups according to mortality outcome. Out of 206 acute ALP-poisoned patients, we recorded 67.5 % fatalities. The median value of the Glu-K ratio was significantly higher in nonsurvivors than in survivors (44.8 versus 28.9; p < 0.001). The Glu-K positively correlated with PSS, APACHE II, and PGI scores (p < 0.001). The APACHE II score exhibited the highest performance for predicting mortality and the need for mechanical ventilation (AUC=0.876 and 0.853, respectively). However, the Glu-K ratio conveyed a comparable discriminatory power with other scoring systems (PSS and PGI) for anticipating all unfavorable outcomes. Patients with a Glu-K ratio ≥ 37.07 had significantly decreased survival duration than patients with a Glu-K ratio < 37.07 (0.38 versus 3 days; p < 0.001). Therefore, the initial Glu-K ratio is an easily accessible routine biomarker for assessing poisoning severity and outcomes probability of ALP-poisoned patients, particularly with limited healthcare facilities.
Collapse
|
2
|
Wang N, Lu S, Cao Z, Li H, Xu J, Zhou Q, Yin H, Qian Q, Zhang X, Tao M, Jiang Q, Zhou P, Zheng L, Han L, Li H, Yin L, Gu Y, Dou X, Sun H, Wang W, Piao HL, Li F, Xu Y, Yang W, Chen S, Liu J. Pyruvate metabolism enzyme DLAT promotes tumorigenesis by suppressing leucine catabolism. Cell Metab 2025:S1550-4131(25)00066-X. [PMID: 40112809 DOI: 10.1016/j.cmet.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/24/2024] [Accepted: 02/22/2025] [Indexed: 03/22/2025]
Abstract
Pyruvate and branched-chain amino acid (BCAA) metabolism are pivotal pathways in tumor progression, yet the intricate interplay between them and its implications for tumor progression remain elusive. Our research reveals that dihydrolipoamide S-acetyltransferase (DLAT), a pyruvate metabolism enzyme, promotes leucine accumulation and sustains mammalian target of rapamycin (mTOR) complex activation in hepatocellular carcinoma (HCC). Mechanistically, DLAT directly acetylates the K109 residue of AU RNA-binding methylglutaconyl-coenzyme A (CoA) hydratase (AUH), a critical enzyme in leucine catabolism, inhibiting its activity and leading to leucine accumulation. Notably, DLAT upregulation correlates with poor prognosis in patients with HCC. Therefore, we developed an AUHK109R-mRNA lipid nanoparticles (LNPs) therapeutic strategy, which effectively inhibits tumor growth by restoring leucine catabolism and inhibiting mTOR activation in vivo. In summary, our findings uncover DLAT's unexpected role as an acetyltransferase for AUH, suppressing leucine catabolism. Restoring leucine catabolism with AUHK109R-mRNA LNP effectively inhibits HCC development, highlighting a novel direction for cancer research.
Collapse
Affiliation(s)
- Ning Wang
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Sijia Lu
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ziyi Cao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huimin Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junting Xu
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qian Zhou
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hanrui Yin
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qiqi Qian
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xianjing Zhang
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mijia Tao
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Quanxin Jiang
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Peihui Zhou
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Liaoyuan Zheng
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Liu Han
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hongtao Li
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Limin Yin
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yunqing Gu
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xuefeng Dou
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Haipeng Sun
- Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Wei Wang
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fuming Li
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiwei Yang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Suzhen Chen
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Junli Liu
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
3
|
Giangregorio F, Mosconi E, Debellis MG, Provini S, Esposito C, Garolfi M, Oraka S, Kaloudi O, Mustafazade G, Marín-Baselga R, Tung-Chen Y. A Systematic Review of Metabolic Syndrome: Key Correlated Pathologies and Non-Invasive Diagnostic Approaches. J Clin Med 2024; 13:5880. [PMID: 39407941 PMCID: PMC11478146 DOI: 10.3390/jcm13195880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background and Objectives: Metabolic syndrome (MetS) is a condition marked by a complex array of physiological, biochemical, and metabolic abnormalities, including central obesity, insulin resistance, high blood pressure, and dyslipidemia (characterized by elevated triglycerides and reduced levels of high-density lipoproteins). The pathogenesis develops from the accumulation of lipid droplets in the hepatocyte (steatosis). This accumulation, in genetically predisposed subjects and with other external stimuli (intestinal dysbiosis, high caloric diet, physical inactivity, stress), activates the production of pro-inflammatory molecules, alter autophagy, and turn on the activity of hepatic stellate cells (HSCs), provoking the low grade chronic inflammation and the fibrosis. This syndrome is associated with a significantly increased risk of developing type 2 diabetes mellitus (T2D), cardiovascular diseases (CVD), vascular, renal, pneumologic, rheumatological, sexual, cutaneous syndromes and overall mortality, with the risk rising five- to seven-fold for T2DM, three-fold for CVD, and one and a half-fold for all-cause mortality. The purpose of this narrative review is to examine metabolic syndrome as a "systemic disease" and its interaction with major internal medicine conditions such as CVD, diabetes, renal failure, and respiratory failure. It is essential for internal medicine practitioners to approach this widespread condition in a "holistic" rather than a fragmented manner, particularly in Western countries. Additionally, it is important to be aware of the non-invasive tools available for assessing this condition. Materials and Methods: We conducted an exhaustive search on PubMed up to July 2024, focusing on terms related to metabolic syndrome and other pathologies (heart, Lung (COPD, asthma, pulmonary hypertension, OSAS) and kidney failure, vascular, rheumatological (osteoarthritis, rheumatoid arthritis), endocrinological, sexual pathologies and neoplastic risks. The review was managed in accordance with the PRISMA statement. Finally, we selected 300 studies (233 papers for the first search strategy and 67 for the second one). Our review included studies that provided insights into metabolic syndrome and non-invasive techniques for evaluating liver fibrosis and steatosis. Studies that were not conducted on humans, were published in languages other than English, or did not assess changes related to heart failure were excluded. Results: The findings revealed a clear correlation between metabolic syndrome and all the pathologies above described, indicating that non-invasive assessments of hepatic fibrosis and steatosis could potentially serve as markers for the severity and progression of the diseases. Conclusions: Metabolic syndrome is a multisystem disorder that impacts organs beyond the liver and disrupts the functioning of various organs. Notably, it is linked to a higher incidence of cardiovascular diseases, independent of traditional cardiovascular risk factors. Non-invasive assessments of hepatic fibrosis and fibrosis allow clinicians to evaluate cardiovascular risk. Additionally, the ability to assess liver steatosis may open new diagnostic, therapeutic, and prognostic avenues for managing metabolic syndrome and its complications, particularly cardiovascular disease, which is the leading cause of death in these patients.
Collapse
Affiliation(s)
- Francesco Giangregorio
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Emilio Mosconi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Maria Grazia Debellis
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Stella Provini
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Ciro Esposito
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Matteo Garolfi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Simona Oraka
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Olga Kaloudi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Gunel Mustafazade
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Raquel Marín-Baselga
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| | - Yale Tung-Chen
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| |
Collapse
|
4
|
Zhang Q, Huang Z, Chen S, Yan E, Zhang X, Su M, Zhou J, Wang W. Association between the serum glucose-to-potassium ratio and clinical outcomes in ischemic stroke patients after endovascular thrombectomy. Front Neurol 2024; 15:1463365. [PMID: 39410992 PMCID: PMC11473311 DOI: 10.3389/fneur.2024.1463365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Background and purpose The baseline glucose-to-potassium ratio (GPR) is associated with poor outcomes in patients with acute brain injury and intracranial hemorrhage. However, the impact of serum GPR on clinical outcomes after endovascular thrombectomy (EVT) is unclear. This study aimed to evaluate the association between the GPR at admission and functional outcomes at 90 days after EVT. Methods We retrospectively reviewed our database for patients with acute ischemic stroke involving an anterior circulation large-vessel occlusion who received EVT between October 2019 and December 2021. The baseline serum GPR was measured after admission. The primary outcome was a 90-day poor outcome, which was defined as a modified Rankin scale score of 3-6. Results A total of 273 patients (mean age, 70.9 ± 11.9 years; 161 men) were finally included for analyses. During the 90-day follow-up, 151 patients (55.3%) experienced an unfavorable outcome. After adjusting for demographic characteristics and other potential confounders, the increased GPR was significantly associated with a higher risk of a 90-day poor outcome (odds ratio, 1.852; 95% confidence interval, 1.276-2.688, p = 0.001). Similar results were observed when the GPR was analyzed as a categorical variable. In addition, the restricted cubic spline observed a positive and linear association between the GPR and poor outcomes at 90 days (p = 0.329 for linearity; p = 0.001 for linearity). Conclusion Our study found that ischemic stroke patients with the higher GPR at admission were more likely to have an unfavorable prognosis at 3 months, suggesting that GPR may be a potential prognostic biomarker for ischemic stroke after EVT.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhihang Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shuaiyu Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - E. Yan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaohao Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mouxiao Su
- Department of Neurology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Elmansy AM, Hannora DM, Khalifa HK. Serum glucose/potassium ratio as an indicator of early and delayed outcomes of acute carbon monoxide poisoning. Toxicol Res (Camb) 2024; 13:tfae168. [PMID: 39381599 PMCID: PMC11457236 DOI: 10.1093/toxres/tfae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Carbon monoxide (CO) poisoning is a major health problem associated with a high rate of severe morbidity and mortality. AIMS This study aimed to evaluate the validity of the serum glucose/potassium (Glu/K) ratio as a quick predictor of both early and delayed unfavorable outcomes following acute CO poisoning. PATIENTS AND METHODS This prospective cohort study included 136 patients with acute CO poisoning admitted at Tanta Poison Control Center, Egypt, between January 2023 and June 2024. The serum Glu/K ratio was calculated for all patients. The primary outcome was a prediction of mortality. Secondary outcomes were the prediction of delayed neurological sequelae (DNS) within six months after CO exposure, the need for mechanical ventilation, and the need for hyperbaric oxygen. A receiver operating curve analysis was applied to test the performance of the Glu/K ratio in predicting acute CO poisoning outcomes. RESULTS The mortality rate was 12.5% of patients with acute CO poisoning. Meanwhile, 14.7% of patients developed DNS. Furthermore, mechanical ventilation was required in 16.9% of patients. An elevated Glu/K ratio was significantly associated with the severity of acute CO poisoning. At a cut-off value of >31.62, the Glu/K ratio demonstrated an AUC of 0.649 for predicting mortality. The Glu/K ratio was employed to predict DNS at a cut-off value of 33.10, with a sensitivity of 60.0%, a specificity of 82.76%, and an AUC of 0.692. CONCLUSIONS Early Glu/K ratio may be an effective, reliable, and convenient laboratory predictor of mortality, DNS, and the need for mechanical ventilation in patients with acute CO poisoning.
Collapse
Affiliation(s)
- Alshaimma Mahmoud Elmansy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Medical colleges campus, 6 Floor, Al-Geish Street, Tanta University, Tanta, Elgharbya, 31527, Egypt
| | - Dalia Mustafa Hannora
- Neuropsychiatry Department, Faculty of Medicine, Medical colleges campus, Al-Geish Street, Tanta University, Tanta, Elgharbya, 31527, Egypt
| | - Heba K Khalifa
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Medical colleges campus, 6 Floor, Al-Geish Street, Tanta University, Tanta, Elgharbya, 31527, Egypt
| |
Collapse
|
6
|
Bischoff SC, Arends J, Decker-Baumann C, Hütterer E, Koch S, Mühlebach S, Roetzer I, Schneider A, Seipt C, Simanek R, Stanga Z. S3-Leitlinie Heimenterale und heimparenterale Ernährung der Deutschen
Gesellschaft für Ernährungsmedizin (DGEM). AKTUELLE ERNÄHRUNGSMEDIZIN 2024; 49:73-155. [DOI: 10.1055/a-2270-7667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
ZusammenfassungMedizinische Ernährungstherapie, die enterale und parenterale Ernährung umfasst,
ist ein wesentlicher Teil der Ernährungstherapie. Medizinische
Ernährungstherapie beschränkt sich nicht auf die Krankenhausbehandlung, sondern
kann effektiv und sicher auch zu Hause eingesetzt werden. Dadurch hat sich der
Stellenwert der Medizinischen Ernährungstherapie deutlich erhöht und ist zu
einem wichtigen Bestandteil der Therapie vieler chronischer Erkrankungen
geworden. Für Menschen mit chronischem Darmversagen, z. B. wegen Kurzdarmsyndrom
ist die Medizinische Ernährungstherapie sogar lebensrettend. In der Leitlinie
wird die Evidenz für die Medizinische Ernährungstherapie in 161 Empfehlungen
dargestellt. Die Leitlinie wendet sich in erster Linie an Ärzte,
Ernährungsfachkräfte und Pflegekräfte, sie dient der Information für
Pharmazeuten und anderes Fachpersonal, kann aber auch für den interessierten
Laien hilfreich sein.
Collapse
Affiliation(s)
- Stephan C. Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart,
Deutschland
| | - Jann Arends
- Klinik für Innere Medizin I, Universitätsklinikum Freiburg,
Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg,
Deutschland
| | - Christiane Decker-Baumann
- Nationales Centrum für Tumorerkrankungen (NCT), Universitätsklinikum
Heidelberg, Heidelberg, Deutschland
| | - Elisabeth Hütterer
- Medizinische Universität Wien, Universitätsklinik für Innere Medizin I,
Wien, Österreich
| | - Sebastian Koch
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie
Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin,
Deutschland
| | - Stefan Mühlebach
- Universität Basel, Institut für Klinische Pharmazie & Epidemiologe,
Spitalpharmazie, Basel, Schweiz
| | - Ingeborg Roetzer
- Nationales Centrum für Tumorerkrankungen (NCT), Universitätsklinikum
Heidelberg, Heidelberg, Deutschland
- Klinik für Hämatologie und Onkologie, Krankenhaus Nordwest, Frankfurt
am Main, Deutschland
| | - Andrea Schneider
- Medizinische Hochschule Hannover, Klinik für Gastroenterologie,
Hepatologie, Infektiologie und Endokrinologie, Hannover,
Deutschland
| | - Claudia Seipt
- Medizinische Hochschule Hannover, Klinik für Gastroenterologie,
Hepatologie, Infektiologie und Endokrinologie, Hannover,
Deutschland
| | - Ralph Simanek
- Gesundheitszentrum Floridsdorf der Österreichischen Gesundheitskasse,
Hämatologische Ambulanz, Wien, Österreich
| | - Zeno Stanga
- Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin
und Metabolismus, Inselspital, Universitätsspital Bern und Universität Bern,
Bern, Schweiz
| |
Collapse
|
7
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Sun WX, Zhang KH, Zhou Q, Hu SH, Lin Y, Xu W, Zhao SM, Yuan YY. Tryptophanylation of insulin receptor by WARS attenuates insulin signaling. Cell Mol Life Sci 2024; 81:25. [PMID: 38212570 PMCID: PMC11072365 DOI: 10.1007/s00018-023-05082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Increased circulating amino acid levels have been linked to insulin resistance and development of type 2 diabetes (T2D), but the underlying mechanism remains largely unknown. Herein, we show that tryptophan modifies insulin receptor (IR) to attenuate insulin signaling and impair glucose uptake. Mice fed with tryptophan-rich chow developed insulin resistance. Excessive tryptophan promoted tryptophanyl-tRNA synthetase (WARS) to tryptophanylate lysine 1209 of IR (W-K1209), which induced insulin resistance by inhibiting the insulin-stimulated phosphorylation of IR, AKT, and AS160. SIRT1, but not other sirtuins, detryptophanylated IRW-K1209 to increase the insulin sensitivity. Collectively, we unveiled the mechanisms of how tryptophan impaired insulin signaling, and our data suggested that WARS might be a target to attenuate insulin resistance in T2D patients.
Collapse
Affiliation(s)
- Wen-Xing Sun
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Kai-Hui Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, People's Republic of China
- Children's Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, People's Republic of China
| | - Qian Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China
| | - Song-Hua Hu
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yan Lin
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Fifth People's Hospital of Fudan University, Fudan University, Shanghai, People's Republic of China
| | - Wei Xu
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Fifth People's Hospital of Fudan University, Fudan University, Shanghai, People's Republic of China
| | - Shi-Min Zhao
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China.
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China.
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, People's Republic of China.
| | - Yi-Yuan Yuan
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China.
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Inoue Y, Ueda S, Tanikawa T, Sano A, Suzuki R, Todo H, Higuchi Y, Akao K. Characterization of Carbohydrates, Amino Acids, Viscosity, and Antioxidant Capacity in Rice Wines Made in Saitama, Japan, with Different Sake Rice. Foods 2023; 12:4004. [PMID: 37959123 PMCID: PMC10647497 DOI: 10.3390/foods12214004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
We investigated the physicochemical properties of Japanese rice wines, including their functional properties and carbohydrate and amino acid content in solution and solid state. Three samples were tested. The glucose, allose, and raffinose contents in samples (A, B, C) in g/100 g were (3.47, 3.45, 7.05), (1.60, 1.63, 1.61), and (2.14, 2.75, 1.49), respectively. The total amino acid in µmol/mL was (3.1, 3.5, 4.4). Glutamic acid, alanine, and arginine varied in content across the samples. The viscosity (10 °C) and activation energy (ΔE) calculated using the Andrade equation were (2.81 ± 0.03, 2.74 ± 0.06, 2.69 ± 0.03) mPa-s and (22.3 ± 1.1, 22.0 ± 0.2, 21.3 ± 0.5) kJ/mol, respectively. Principal component analysis using FT-IR spectra confirmed the separation of the samples into principal components 2 and 3. The IC50 values from the DPPH radical scavenging test were (2364.7 ± 185.3, 3041.9 ± 355.1, 3842.7 ± 228.1) µg/mL. Thus, the three rice wines had different carbohydrate and amino acid contents, viscosities, and antioxidant capacities.
Collapse
Affiliation(s)
- Yutaka Inoue
- Laboratory of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan
| | - Sae Ueda
- Laboratory of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan
| | - Takashi Tanikawa
- Laboratory of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan
| | - Aiko Sano
- Laboratory of Natural Products and Phytochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan (R.S.)
| | - Ryuichiro Suzuki
- Laboratory of Natural Products and Phytochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan (R.S.)
| | - Hiroaki Todo
- Laboratory of Pharmaceutics and Cosmeceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan
| | - Yuji Higuchi
- Applicative Solution Lab, JASCO Corporation, 2967-5 Ishikawa-machi, Hachioji 1928537, Tokyo, Japan
| | - Kenichi Akao
- Applicative Solution Lab, JASCO Corporation, 2967-5 Ishikawa-machi, Hachioji 1928537, Tokyo, Japan
| |
Collapse
|
10
|
Cao Y, Yang M, Song J, Jiang X, Xu S, Che L, Fang Z, Lin Y, Jin C, Feng B, Wu D, Hua L, Zhuo Y. Dietary Protein Regulates Female Estrous Cyclicity Partially via Fibroblast Growth Factor 21. Nutrients 2023; 15:3049. [PMID: 37447375 DOI: 10.3390/nu15133049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), a hormone predominantly released in the liver, has emerged as a critical endocrine signal of dietary protein intake, but its role in the control of estrous cyclicity by dietary protein remains uncertain. To investigated the role of FGF21 and hypothalamic changes in the regulation of estrous cyclicity by dietary protein intake, female adult Sprague-Dawley rats with normal estrous cycles were fed diets with protein contents of 4% (P4), 8% (P8), 13% (P13), 18% (P18), and 23% (P23). FGF21 liver-specific knockout or wild-type mice were fed P18 or P4 diets to examine the role of liver FGF21 in the control of estrous cyclicity. Dietary protein restriction resulted in no negative effects on estrous cyclicity or ovarian follicular development when the protein content was greater than 8%. Protein restriction at 4% resulted in decreased bodyweight, compromised Kiss-1 expression in the hypothalamus, disturbed estrous cyclicity, and inhibited uterine and ovarian follicular development. The disturbed estrous cyclicity in rats that received the P4 diet was reversed after feeding with the P18 diet. Liver Fgf21 mRNA expressions and serum FGF21 levels were significantly increased as dietary protein content decreased, and loss of hepatic FGF21 delayed the onset of cyclicity disruption in rats fed with the P4 diet, possibly due to the regulation of insulin-like growth factor-1. Collectively, severe dietary protein restriction results in the cessation of estrous cyclicity and ovarian follicle development, and hepatic FGF21 and hypothalamic Kiss-1 were partially required for this process.
Collapse
Affiliation(s)
- Yaxue Cao
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Yang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu 611130, China
| | - Jie Song
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Jin
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Alemany M. The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. Int J Mol Sci 2022; 23:11952. [PMID: 36233256 PMCID: PMC9569951 DOI: 10.3390/ijms231911952] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Androgens are an important and diverse group of steroid hormone molecular species. They play varied functional roles, such as the control of metabolic energy fate and partition, the maintenance of skeletal and body protein and integrity and the development of brain capabilities and behavioral setup (including those factors defining maleness). In addition, androgens are the precursors of estrogens, with which they share an extensive control of the reproductive mechanisms (in both sexes). In this review, the types of androgens, their functions and signaling are tabulated and described, including some less-known functions. The close interrelationship between corticosteroids and androgens is also analyzed, centered in the adrenal cortex, together with the main feedback control systems of the hypothalamic-hypophysis-gonads axis, and its modulation by the metabolic environment, sex, age and health. Testosterone (T) is singled out because of its high synthesis rate and turnover, but also because age-related hypogonadism is a key signal for the biologically planned early obsolescence of men, and the delayed onset of a faster rate of functional losses in women after menopause. The close collaboration of T with estradiol (E2) active in the maintenance of body metabolic systems is also presented Their parallel insufficiency has been directly related to the ravages of senescence and the metabolic syndrome constellation of disorders. The clinical use of T to correct hypoandrogenism helps maintain the functionality of core metabolism, limiting excess fat deposition, sarcopenia and cognoscitive frailty (part of these effects are due to the E2 generated from T). The effectiveness of using lipophilic T esters for T replacement treatments is analyzed in depth, and the main problems derived from their application are discussed.
Collapse
Affiliation(s)
- Marià Alemany
- Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 635, 08028 Barcelona, Catalonia, Spain;
- Institut de Biomedicina, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
A Glucokinase-linked Sensor in the Taste System Contributes to Glucose Appetite. Mol Metab 2022; 64:101554. [PMID: 35870707 PMCID: PMC9399534 DOI: 10.1016/j.molmet.2022.101554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/23/2023] Open
Abstract
Objectives Dietary glucose is a robust elicitor of central reward responses and ingestion, but the key peripheral sensors triggering these orexigenic mechanisms are not entirely known. The objective of this study was to determine whether glucokinase, a phosphorylating enzyme with known glucosensory roles, is also expressed in taste bud cells and contributes to the immediate hedonic appeal of glucose-containing substances. Methods and results Glucokinase (GCK) gene transcripts were localized in murine taste bud cells with RNAScope®, and GCK mRNA was found to be upregulated in the circumvallate taste papillae in response to fasting and after a period of dietary access to added simple sugars in mice, as determined with real time-qPCR. Pharmacological activation of glucokinase with Compound A increased primary taste nerve and licking responses for glucose but did not impact responsivity to fructose in naïve mice. Virogenetic silencing of glucokinase in the major taste fields attenuated glucose-stimulated licking, especially in mice that also lacked sweet receptors, but did not disrupt consummatory behaviors for fructose or the low-calorie sweetener, sucralose in sugar naïve mice. Knockdown of lingual glucokinase weakened the acquired preference for glucose over fructose in sugar-experienced mice in brief access taste tests. Conclusions Collectively, our data establish that glucokinase contributes to glucose appetition at the very first site of nutrient detection, in the oral cavity. The findings expand our understanding of orosensory inputs underlying nutrition, metabolism, and food reward. Glucokinase is expressed in the taste bud cells. Gustatory glucokinase is upregulated by energy deficit and regular consumption of simple sugars. Gustatory glucokinase is required for normal glucose taste detection and contributes to the hedonic appeal of this nutrient.
Collapse
|
13
|
The association between serum glucose to potassium ratio on admission and short-term mortality in ischemic stroke patients. Sci Rep 2022; 12:8233. [PMID: 35581319 PMCID: PMC9114007 DOI: 10.1038/s41598-022-12393-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
High serum glucose to potassium ratio (GPR) at admission is implicated for a poor outcome in acute brain injury, acute intracranial hemorrhage, and aneurysmal subarachnoid hemorrhage. However, the relationship between GPR and the outcome of ischemic stroke (IS) remains unknown. In all, 784 IS patients from a large emergency Norwegian cohort were included for secondary analysis. The exposure and outcome were GPR at baseline and all-cause mortality within 30 days after the first admission. Multivariable logistic regression analysis was performed to estimate the risk of 30-day mortality based on GPR levels. In addition, we examined whether there was a nonlinear relationship between admission GPR and 30-day mortality using two-piecewise linear regression with a smoothing function and threshold level analysis. The results of multivariable regression analysis showed that GPR at baseline was positively associated with the 30-day mortality (OR 2.01, 95% CI 1.12, 3.61) after adjusting for potential confounders (age, gender, department, serum sodium, serum albumin, serum-magnesium, hypertension, heart failure, chronic renal failure, and pneumonia). When GPR was translated to a categorical variable, the ORs and 95% CIs in the tertiles 2 to 3 versus the tertile 1 were 1.24 (0.60, 2.56) and 2.15 (1.09, 4.24), respectively (P for trend = 0.0188). Moreover, the results of the two-piecewise linear regression and curve fitting revealed a linear relationship between GPR and 30-day mortality. In IS patients, GPR is positively correlated with 30-day mortality, and the relationship between them is linear. The GPR at admission may be a promising predictor for the short-term outcome in IS patients.
Collapse
|
14
|
Shimizu T, Saito T, Aoki-Saito H, Okada S, Ikeda H, Nakakura T, Fukuda H, Arai S, Fujiwara K, Nakajima Y, Horiguchi K, Yamada S, Ishida E, Hisada T, Shuto S, Yamada M. Resolvin E3 ameliorates high-fat diet-induced insulin resistance via the phosphatidylinositol-3-kinase/Akt signaling pathway in adipocytes. FASEB J 2022; 36:e22188. [PMID: 35129868 DOI: 10.1096/fj.202100053r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
Abstract
Obesity-associated type 2 diabetes mellitus is associated with the development of insulin resistance. Among several metabolites, resolvins that are metabolites of eicosapentaenoic acid have been shown to exert insulin-sensitizing effects; however, the role of resolvin E3 (RvE3) in glucose metabolism has not been studied. In this study, the effect of RvE3 on glucose metabolism in mice with high-fat diet-induced obesity and 3T3L1 adipocytes was studied. C57BL/6 mice fed a high-fat diet were administered RvE3, for which insulin tolerance, oral glucose tolerance tests, and the homeostasis model assessment of insulin resistance, were performed. RvE3 treatment significantly improved insulin sensitivity and glucose tolerance and regulated protein kinase B (Akt) phosphorylation in the adipose tissue. Moreover, RvE3 treatment enhanced the insulin-stimulated glucose transporter 4 (Glut4) translocation, glucose uptake, phosphatidylinositol-3-kinase (PI3K) activity, and Akt phosphorylation in 3T3L1 adipocytes, whereas a PI3K inhibitor inhibited the enhanced insulin-stimulated glucose uptake induced by RvE3. These findings indicate that RvE3 likely improves insulin sensitivity, resulting in the upregulation of glucose uptake in adipocytes by activating the PI3K/Akt signaling pathways. Collectively, the findings of this study show that RvE3 may play a role in glucose homeostasis and could be used as a potential therapeutic target for developing treatments for obesity-associated diabetes.
Collapse
Affiliation(s)
- Tomohiko Shimizu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tsugumichi Saito
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Center for Medical Education, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Haruka Aoki-Saito
- Department of Respiratory Medicine and Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shuichi Okada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroyuki Ikeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | | | - Hayato Fukuda
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Syota Arai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Kouichi Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Yasuyo Nakajima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuhiro Horiguchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sayaka Yamada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Emi Ishida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Masanobu Yamada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
15
|
Zhang WW, Xue R, Mi TY, Shen XM, Li JC, Li S, Zhang Y, Li Y, Wang LX, Yin XL, Wang HL, Zhang YZ. Propofol ameliorates acute postoperative fatigue and promotes glucagon-regulated hepatic gluconeogenesis by activating CREB/PGC-1α and accelerating fatty acids beta-oxidation. Biochem Biophys Res Commun 2022; 586:121-128. [PMID: 34839190 DOI: 10.1016/j.bbrc.2021.11.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 11/02/2022]
Abstract
Postoperative fatigue (POF) is the most common and long-lasting complication after surgery, which brings heavy burden to individuals and society. Recently, hastening postoperative recovery receives increasing attention, but unfortunately, the mechanisms underlying POF remain unclear. Propofol is a wildly used general anesthetic in clinic, and inspired by the rapid antidepressant effects induced by ketamine at non-anesthetic dose, the present study was undertaken to investigate the anti-fatigue effects and underlying mechanisms of propofol at a non-anesthetic dose in 70% hepatectomy induced POF model in rats. We first showed here that single administration of propofol at 0.1 mg/kg ameliorated acute POF in hepatectomy induced POF rats. Based on metabonomics analysis, we hypothesized that propofol exerted anti-fatigue activity in POF rats by facilitating free fatty acid (FFA) oxidation and gluconeogenesis. We further confirmed that propofol restored the deficit in FFA oxidation and gluconeogenesis in POF rats, as evidenced by the elevated FFA utilization, acetyl coenzyme A content, pyruvic acid content, phosphoenolpyruvic acid content, hepatic glucose output and glycogen storage. Moreover, propofol stimulated glucagon secretion and up-regulated expression of cAMP-response element binding protein (CREB), phosphorylated CREB, peroxlsome prolifeator-activated receptor-γ coactivator-1α (PGC-1α), phosphoenolpyruvate carboxykinade1 and carnitine palmitoltransferase 1A. In summary, our study suggests for the first time that propofol ameliorates acute POF by promoting glucagon-regulated gluconeogenesis via CREB/PGC-1α signaling and accelerating FFA beta-oxidation.
Collapse
Affiliation(s)
- W W Zhang
- Department of Anesthesiology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Hebei North University, Heibei, China
| | - R Xue
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - T Y Mi
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, United States
| | - X M Shen
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - J C Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - S Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Y Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Y Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - L X Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - X L Yin
- Department of Anesthesiology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Hebei North University, Heibei, China
| | - H L Wang
- Department of Anesthesiology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China; Hebei North University, Heibei, China.
| | - Y Z Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| |
Collapse
|
16
|
Circulating oestradiol determines liver lipid deposition in rats fed standard diets partially unbalanced with higher lipid or protein proportions. Br J Nutr 2021; 128:1499-1508. [PMID: 34776031 PMCID: PMC9557166 DOI: 10.1017/s0007114521004505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ingestion of excess lipids often produces the accumulation of liver fat. The modulation of diet energy partition affects this process and other metabolic responses, and oestrogens and androgens are implied in this process. Ten-week-old male and female rats were fed with either standard rat chow (SD), SD enriched with coconut oil (high-fat diet, HF), SD enriched with protein (high-protein diet, HP) or a ‘cafeteria’ diet (CAF) for 1 month. HF and CAF diets provided the same lipid-derived percentage of energy (40 %), HP diet protein energy derived was twice (40 %) that of the SD. Animals were killed under anaesthesia and samples of blood and liver were obtained. Hepatic lipid content showed sex-related differences: TAG accumulation tended to increase in HF and CAF fed males. Cholesterol content was higher only in the CAF males. Plasma oestradiol in HF and HP males was higher than in CAF. Circulating cholesterol was inversely correlated with plasma oestradiol. These changes agreed with the differences in the expression of some enzymes related to lipid and energy metabolism, such as fatty acid synthetase or phosphoglycolate phosphatase. Oestrogen protective effects extend to males with ‘normal’ diets, that is, not unbalanced by either lipid or protein, but this protection was not enough against the CAF diet. Oestradiol seems to actively modulate the liver core of 2C-3C partition of energy substrates, regulating cholesterol deposition and lactate production.
Collapse
|
17
|
Alemany M. Estrogens and the regulation of glucose metabolism. World J Diabetes 2021; 12:1622-1654. [PMID: 34754368 PMCID: PMC8554369 DOI: 10.4239/wjd.v12.i10.1622] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The main estrogens: estradiol, estrone, and their acyl-esters have been studied essentially related to their classical estrogenic and pharmacologic functions. However, their main effect in the body is probably the sustained control of core energy metabolism. Estrogen nuclear and membrane receptors show an extraordinary flexibility in the modulation of metabolic responses, and largely explain gender and age differences in energy metabolism: part of these mechanisms is already sufficiently known to justify both. With regard to energy, the estrogen molecular species act essentially through four key functions: (1) Facilitation of insulin secretion and control of glucose availability; (2) Modulation of energy partition, favoring the use of lipid as the main energy substrate when more available than carbohydrates; (3) Functional protection through antioxidant mechanisms; and (4) Central effects (largely through neural modulation) on whole body energy management. Analyzing the different actions of estrone, estradiol and their acyl esters, a tentative classification based on structure/effects has been postulated. Either separately or as a group, estrogens provide a comprehensive explanation that not all their quite diverse actions are related solely to specific molecules. As a group, they constitute a powerful synergic action complex. In consequence, estrogens may be considered wardens of energy homeostasis.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|