1
|
Gebretsadik KG, Liu Z, Yang J, Liu H, Qin A, Zhou Y, Guo E, Song X, Gao P, Xie Y, Vincent N, Tran LSP, Sun X. Plant-aphid interactions: recent trends in plant resistance to aphids. STRESS BIOLOGY 2025; 5:28. [PMID: 40299207 PMCID: PMC12041410 DOI: 10.1007/s44154-025-00214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 04/30/2025]
Abstract
Aphids are highly destructive agricultural pests characterized by complex life cycles and phenotypic variability, facilitating their adaptation to diverse climates and host plants. Their feeding behavior leads to plant deformation, wilting, stunted growth, disease transmission, and significant yield losses. Given the economic risks aphids pose, regular updates on their seasonal behaviors, adaptive mechanisms, and destructive activities are critical for improving management strategies to mitigate crop losses. This review comprehensively synthesizes recent studies on aphids as plant pests, the extrinsic factors influencing their life cycles, and the intricate interactions between aphids and their hosts. It also highlights recent advancements in biological control measures, including natural enemies, antibiosis, and antixenosis. Additionally, we explore plant defense mechanisms against aphids, focusing on the roles of cell wall components such as lignin, pectin and callose deposition and the genetic regulations underlying these defenses. Aphids, however, can evolve specialized strategies to overcome general plant defenses, prompting the development of targeted mechanisms in plants, such as the use of resistance (R) genes against specific aphid species. Additionally, plant pattern recognition receptors (PRRs) recognize compounds in aphid saliva, which triggers enhanced phloem sealing and more focused immune responses. This work enhances understanding of aphid-plant interaction and plant resistance and identifies key research gaps for future studies.
Collapse
Affiliation(s)
- Kifle Gebreegziabiher Gebretsadik
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
- Tigray Agricultural Research Institute (TARI), Mekelle, 5637, Ethiopia
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Jincheng Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Hao Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Aizhi Qin
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Enzhi Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Xiao Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Peibo Gao
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Yajie Xie
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Ninkuu Vincent
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China.
| |
Collapse
|
2
|
Zhang Y, Wang X, Bian Z, Se C, Yang G, Lu Y. Application of flavonoid compounds suppresses the cotton aphid, Aphis gossypii. FRONTIERS IN PLANT SCIENCE 2025; 16:1545499. [PMID: 40247935 PMCID: PMC12003358 DOI: 10.3389/fpls.2025.1545499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Introduction The cotton aphid Aphis gossypii is a significant polyphagous crop pest and has evolved a high level of resistance to neonicotinoids and other insecticides. Flavonoids, plant phytonutrients, have shown promise as natural insect deterrents and growth inhibitors. However, comprehensive evaluations of the effects of flavonoids on A. gossypii are currently lacking. Methods In this study, we first evaluated the effects of seven flavonoids (kaempferol, genistein, daidzein, naringenin, rutin, luteolin, and apigenin) on aphid settling behavior using choice assays, followed by electrical penetration graph (EPG) recordings to assess their influence on feeding activity. We then measured honeydew excretion and conducted life table analysis under laboratory conditions to assess effects on growth and reproduction. Under greenhouse conditions, all seven flavonoids were tested for their inhibitory effects on A. gossypii population growth over 12 days. Based on the results, three effective flavonoids were selected for further testing at four concentrations (1×, 2×, 3×, and 4× of 1 μg/μL) to assess dose-dependent effects. Results We found that all seven flavonoids significantly deterred aphid settling on host plants. Kaempferol, daidzein, naringenin, rutin, luteolin, and apigenin significantly reduced the total duration of phloem feeding and the proportion of time spent on phloem-related activities. And also, each of seven flavonoids reduced honeydew production compared to controls. In the laboratory, all flavonoids reduced adult longevity and fecundity, and kaempferol, genistein, daidzein, naringenin, luteolin and apigenin also reduced the net reproductive rate (R0), intrinsic rate of increase (rm), and finite rate of increase (λ). Naringenin, apigenin, and kaempferol significantly inhibited A. gossypii population growth in a dose-dependent manner over 12 days. Discussion These results demonstrate that the seven flavonoids, especially naringenin, apigenin, and kaempferol tested provided effective management of A. gossypii populations by deterring host settling, reducing phloem feeding, honeydew production, and decreasing reproductive rates. This study highlights the potential of flavonoids as eco-friendly control agents against A. gossypii.
Collapse
Affiliation(s)
- Ying Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhipeng Bian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenchen Se
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoqing Yang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
3
|
Martín F, Guirao P, Pascual-Villalobos MJ. Repellent Effects of Coconut Fatty Acid Methyl Esters and Their Blends with Bioactive Volatiles on Winged Myzus persicae (Sulzer) Aphids (Hemiptera: Aphididae). INSECTS 2024; 15:731. [PMID: 39336699 PMCID: PMC11431849 DOI: 10.3390/insects15090731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Myzus persicae (Sulzer) (Hemiptera: Aphididae) is one of the most important aphid crop pests, due to its direct damage and its ability to transmit viral diseases in crops. The objective is to test whether spraying nanoemulsions of botanical products repels winged individuals of M. persicae in a bioassay in culture chambers. The bioactive volatiles were applied on pepper plants at a dose of 0.2% alone or at 0.1% of each component in blends. A treated plant and a control plant were placed at each side of an entomological cage inside a growth chamber. The winged individuals were released between the plants, in a black-painted Petri dish suspended by wires in the upper half of the cage. The most repellent products were farnesol (repellency index, RI = 40.24%), (E)-anethole (RI = 30.85%) and coconut fatty acid methyl ester (coconut FAME) (RI = 28.93%), alone or in the following blends: farnesol + (E)-anethole + distilled lemon oil (RI = 36.55%) or (E)-anethole + distilled lemon oil + coconut FAME (RI = 30.63%). The observed effect of coconut FAME on aphids is the first report of this product having a repellent effect on a crop pest. Repellent substances for viral disease vectors should be further investigated to develop new strategies for plant protection.
Collapse
Affiliation(s)
- Félix Martín
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), c/Mayor s/n, 30150 La Alberca, Murcia, Spain;
- Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera de Beniel km. 3.2, 03312 Orihuela, Alicante, Spain;
| | - Pedro Guirao
- Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera de Beniel km. 3.2, 03312 Orihuela, Alicante, Spain;
| | - María Jesús Pascual-Villalobos
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), c/Mayor s/n, 30150 La Alberca, Murcia, Spain;
| |
Collapse
|
4
|
da Cruz Araujo SH, Mantilla-Afanador JG, Svacina T, Nascimento TF, da Silva Lima A, Camara MBP, Viteri Jumbo LO, dos Santos GR, da Rocha CQ, de Oliveira EE. Contributions of γ-Aminobutyric Acid (GABA) Receptors for the Activities of Pectis brevipedunculata Essential Oil against Drosophila suzukii and Pollinator Bees. PLANTS (BASEL, SWITZERLAND) 2024; 13:1392. [PMID: 38794461 PMCID: PMC11124835 DOI: 10.3390/plants13101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
The γ-aminobutyric acid (GABA) receptors play pivotal roles in the transmission of neuronal information in the nervous system of insects, which has led these proteins to be targeted by synthetic and natural products. Here, we assessed the insecticidal potential of the essential oil of Pectis brevipedunculata (Gardner) Sch. Bip., a neotropical Asteraceae plant used in traditional medicine, for controlling Drosophila suzukii (Matsumura) adults by feeding exposure. By using in silico approaches, we disentangle the contribution of GABA receptors and other potential neuronal targets (e.g., acetylcholinesterase, glutathione-S-transferases) in insects that may explain the essential oil differential activities against D. suzukii and two essential pollinator bees (Apis mellifera Linnaeus and Partamona helleri Friese). Neral (26.7%) and geranial (33.9%) were the main essential oil components which killed D. suzukii with an estimated median lethal concentration (LC50) of 2.25 µL/mL. Both pollinator forager bee species, which would likely contact this compound in the field, were more tolerant to the essential oil and did not have their diet consumptions affected by the essential oil. Based on the molecular predictions for the three potential targets and the essential oil main components, a higher affinity of interaction with the GABA receptors of D. suzukii (geranial -6.2 kcal/mol; neral -5.8 kcal/mol) in relation to A. mellifera (geranial -5.2 kcal/mol; neral -4.9 kcal/mol) would contribute to explaining the difference in toxicities observed in the bioassays. Collectively, our findings indicated the involvement of GABA receptors in the potential of P. brevipedunculata essential oil as an alternative tool for controlling D. suzukii.
Collapse
Affiliation(s)
| | - Javier Guillermo Mantilla-Afanador
- Grupo de Pesquisa em Microbiologia e Biotecnologia Agroindustrial, Universidad Católica de Manizales, Rua 23 N. 60-63, Manizales 170001, Colombia;
| | - Thiago Svacina
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (S.H.d.C.A.)
| | - Tarciza Fernandes Nascimento
- Programa de Pós-Graduação em Biotecnologia, Universidade do Federal do Tocantins, Gurupi 77402-970, TO, Brazil (L.O.V.J.); (G.R.d.S.)
| | - Aldilene da Silva Lima
- Departamento de Química, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (A.d.S.L.); (C.Q.d.R.)
| | - Marcos Bispo Pinheiro Camara
- Departamento de Química, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (A.d.S.L.); (C.Q.d.R.)
| | - Luis Oswaldo Viteri Jumbo
- Programa de Pós-Graduação em Biotecnologia, Universidade do Federal do Tocantins, Gurupi 77402-970, TO, Brazil (L.O.V.J.); (G.R.d.S.)
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Gil Rodrigues dos Santos
- Programa de Pós-Graduação em Biotecnologia, Universidade do Federal do Tocantins, Gurupi 77402-970, TO, Brazil (L.O.V.J.); (G.R.d.S.)
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil
| | - Cláudia Quintino da Rocha
- Departamento de Química, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (A.d.S.L.); (C.Q.d.R.)
| | - Eugênio Eduardo de Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (S.H.d.C.A.)
- Programa de Pós-Graduação em Biotecnologia, Universidade do Federal do Tocantins, Gurupi 77402-970, TO, Brazil (L.O.V.J.); (G.R.d.S.)
| |
Collapse
|
5
|
Beňo M, Beňová-Liszeková D, Kostič I, Šerý M, Mentelová L, Procházka M, Šoltýs J, Trusinová L, Ritomský M, Orovčík L, Jerigová M, Velič D, Machata P, Omastová M, Chase BA, Farkaš R. Gross morphology and adhesion-associated physical properties of Drosophila larval salivary gland glue secretion. Sci Rep 2024; 14:9779. [PMID: 38684688 PMCID: PMC11059401 DOI: 10.1038/s41598-024-57292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/16/2024] [Indexed: 05/02/2024] Open
Abstract
One of the major functions of the larval salivary glands (SGs) of many Drosophila species is to produce a massive secretion during puparium formation. This so-called proteinaceous glue is exocytosed into the centrally located lumen, and subsequently expectorated, serving as an adhesive to attach the puparial case to a solid substrate during metamorphosis. Although this was first described almost 70 years ago, a detailed description of the morphology and mechanical properties of the glue is largely missing. Its main known physical property is that it is released as a watery liquid that quickly hardens into a solid cement. Here, we provide a detailed morphological and topological analysis of the solidified glue. We demonstrated that it forms a distinctive enamel-like plaque that is composed of a central fingerprint surrounded by a cascade of laterally layered terraces. The solidifying glue rapidly produces crystals of KCl on these alluvial-like terraces. Since the properties of the glue affect the adhesion of the puparium to its substrate, and so can influence the success of metamorphosis, we evaluated over 80 different materials for their ability to adhere to the glue to determine which properties favor strong adhesion. We found that the alkaline Sgs-glue adheres strongly to wettable and positively charged surfaces but not to neutral or negatively charged and hydrophobic surfaces. Puparia formed on unfavored materials can be removed easily without leaving fingerprints or cascading terraces. For successful adhesion of the Sgs-glue, the material surface must display a specific type of triboelectric charge. Interestingly, the expectorated glue can move upwards against gravity on the surface of freshly formed puparia via specific, unique and novel anatomical structures present in the puparial's lateral abdominal segments that we have named bidentia.
Collapse
Affiliation(s)
- Milan Beňo
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Dúbravská Cesta 9, 84505, Bratislava, Slovakia
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Dúbravská Cesta 9, 84505, Bratislava, Slovakia
| | - Ivan Kostič
- Department of Sensor Information Systems and Technologies, Institute of Informatics v.v.i., Slovak Academy of Sciences, Dúbravská Cesta 9, 845 07, Bratislava, Slovakia
| | - Michal Šerý
- Department of Applied Physics and Technology, Faculty of Education, University of South Bohemia, Jeronýmova 10, 37115, České Budějovice, Czech Republic
| | - Lucia Mentelová
- Department of Genetics, Comenius University, Mlynská Dolina, B-1, 84215, Bratislava, Slovakia
| | - Michal Procházka
- Department of Composite Materials, Polymer Institute v.v.i., Slovak Academy of Sciences, Dúbravská Cesta 9, 84541, Bratislava, Slovakia
| | - Ján Šoltýs
- Department of Physics and Technology at Nanoscale, Institute of Electrical Engineering v.v.i., Slovak Academy of Sciences, Dúbravská Cesta 9, 84104, Bratislava, Slovakia
| | - Ludmila Trusinová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Dúbravská Cesta 9, 84505, Bratislava, Slovakia
| | - Mário Ritomský
- Department of Sensor Information Systems and Technologies, Institute of Informatics v.v.i., Slovak Academy of Sciences, Dúbravská Cesta 9, 845 07, Bratislava, Slovakia
| | - Lubomír Orovčík
- Division of Microstructure of Surfaces and Interfaces, Institute of Materials and Machine Mechanics v.v.i., Slovak Academy of Sciences, Dúbravská Cesta 9, 84513, Bratislava, Slovakia
| | - Monika Jerigová
- Laboratory of Secondary Ion Mass-Spectrometry, International Laser Centre, Slovak Centre of Scientific and Technical Information, Ilkovičova 3, 84104, Bratislava, Slovakia
| | - Dušan Velič
- Laboratory of Secondary Ion Mass-Spectrometry, International Laser Centre, Slovak Centre of Scientific and Technical Information, Ilkovičova 3, 84104, Bratislava, Slovakia
| | - Peter Machata
- Department of Composite Materials, Polymer Institute v.v.i., Slovak Academy of Sciences, Dúbravská Cesta 9, 84541, Bratislava, Slovakia
| | - Mária Omastová
- Department of Composite Materials, Polymer Institute v.v.i., Slovak Academy of Sciences, Dúbravská Cesta 9, 84541, Bratislava, Slovakia
| | - Bruce A Chase
- Department of Biology, University of Nebraska, 6001 Dodge Street, Omaha, NE, 68182-0040, USA
- Department of Data Analytics, Endeavor Health, NorthShore University Health System, Skokie, IL, 60077, USA
| | - Robert Farkaš
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Dúbravská Cesta 9, 84505, Bratislava, Slovakia.
| |
Collapse
|
6
|
Czerniewicz P, Sytykiewicz H, Chrzanowski G. The Effect of Essential Oils from Asteraceae Plants on Behavior and Selected Physiological Parameters of the Bird Cherry-Oat Aphid. Molecules 2024; 29:1673. [PMID: 38611952 PMCID: PMC11013816 DOI: 10.3390/molecules29071673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Essential oils (EOs), including those from the Asteraceae plants, have been shown to have promising insecticidal activity against a wide range of insect pests. Understanding the mechanism of action of EOs is one of the studied aspects. The present study aimed to evaluate the effect of essential oils from Achillea millefolium, Santolina chamaecyparissus, Tagetes patula and Tanacetum vulgare on the settling and probing behavior of the bird cherry-oat aphid (Rhopalosiphum padi L.). In addition, the effect of the oils on the activity of such enzymes as trypsin, pepsin and α- and β-glucosidase involved in the metabolism of proteins and sugars of the insects was examined. The leaf-choice bioassays demonstrated that the studied EOs limited aphid settling for at least 24 h after the treatment. The application of EOs also inferred with aphid probing behavior by reducing the total probing time and total duration of phloem sap ingestion. Aphids spent more time in the search phase due to an increase in the number and total duration of pathway phases. Moreover, the activity of the studied proteases and glucosidases significantly decreased in R. padi females exposed to the EOs. The enzyme inhibition varied depending on the applied oil and exposure time. Generally, the EOs with stronger deterrent activity also showed higher inhibitory effects. The results suggest that the tested EOs disrupt key digestive processes in R. padi which may be an important factor determining their aphicidal activity.
Collapse
Affiliation(s)
- Paweł Czerniewicz
- Institute of Biological Sciences, Faculty of Natural Sciences, University of Siedlce, Prusa 14, 08-110 Siedlce, Poland;
| | - Hubert Sytykiewicz
- Institute of Biological Sciences, Faculty of Natural Sciences, University of Siedlce, Prusa 14, 08-110 Siedlce, Poland;
| | - Grzegorz Chrzanowski
- Institute of Biotechnology, University of Rzeszow, Zelwerowicza 8B, 35-601 Rzeszow, Poland;
| |
Collapse
|
7
|
Vanegas-Estévez T, Duque FM, Urbina DL, Vesga LC, Mendez-Sanchez SC, Duque JE. Design and elucidation of an insecticide from natural compounds targeting mitochondrial proteins of Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105721. [PMID: 38225076 DOI: 10.1016/j.pestbp.2023.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/17/2024]
Abstract
Developing new pesticides poses a significant challenge in designing next-generation natural insecticides that selectively target specific pharmacological sites while ensuring environmental friendliness. In this study, we aimed to address this challenge by formulating novel natural pesticides derived from secondary plant metabolites, which exhibited potent insecticide activity. Additionally, we tested their effect on mitochondrial enzyme activity and the proteomic profile of Ae. aegypti, a mosquito species responsible for transmitting diseases. Initially, 110 key compounds from essential oils were selected that have been reported with insecticidal properties; then, to ensure safety for mammals were performed in silico analyses for toxicity properties, identifying non-toxic candidates for further investigation. Subsequently, in vivo tests were conducted using these non-toxic compounds, focusing on the mosquito's larval stage. Based on the lethal concentration (LC), the most promising compounds as insecticidal were identified as S-limonene (LC50 = 6.4 ppm, LC95 = 17.2 ppm), R-limonene (LC50 = 9.86 ppm, LC95 = 27.7 ppm), citronellal (LC50 = 40.5 ppm, LC95 = 68.6 ppm), R-carvone (LC50 = 61.4 ppm, LC95 = 121 ppm), and S-carvone (LC50 = 62.5 ppm, LC95 = 114 ppm). Furthermore, we formulated a mixture of R-limonene, S-carvone, and citronellal with equal proportions of each compound based on their LC50. This mixture specifically targeted mitochondrial proteins and demonstrated a higher effect that showed by each compound separately, enhancing the insecticidal activity of each compound. Besides, the proteomic profile revealed the alteration in proteins involved in proliferation processes and detoxification mechanisms in Ae. aegypti. In summary, our study presents a formulation strategy for developing next-generation natural insecticides using secondary plant metabolites with the potential for reducing the adverse effects on humans and the development of chemical resistance in insects. Our findings also highlight the proteomic alteration induced by the formulated insecticide, showing insight into the mechanisms of action and potential targets for further exploration in vector control strategies.
Collapse
Affiliation(s)
- Thomas Vanegas-Estévez
- Centro de Investigaciones en Enfermedades Tropicales - Cintrop. Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Parque Tecnológico y de Investigaciones, Guatiguará Km 2 El Refugio Piedecuesta, Santander, A.A. (P.O. Box) 678 Bucaramanga, Colombia
| | - Fanny Melina Duque
- Grupo de Sistemas Organizados (GSO), Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Diana L Urbina
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga A.A. 678, Colombia
| | - Luis C Vesga
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga A.A. 678, Colombia
| | - Stelia C Mendez-Sanchez
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga A.A. 678, Colombia
| | - Jonny E Duque
- Centro de Investigaciones en Enfermedades Tropicales - Cintrop. Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Parque Tecnológico y de Investigaciones, Guatiguará Km 2 El Refugio Piedecuesta, Santander, A.A. (P.O. Box) 678 Bucaramanga, Colombia.
| |
Collapse
|
8
|
Yang Y, Zhang Y, Zhang J, Wang A, Liu B, Zhao M, Wyckhuys KAG, Lu Y. Plant volatiles mediate Aphis gossypii settling but not predator foraging in intercropped cotton. PEST MANAGEMENT SCIENCE 2023; 79:4481-4489. [PMID: 37410545 DOI: 10.1002/ps.7650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) is an important pest of cotton and horticultural crops globally. In China, smallholder farmers regularly intercrop cotton with garlic or onion. Aside from higher farm-level revenue, cotton intercrops are typified by lower Aphis gossypii abundance than monocrops. So far, the mechanistic basis of this lowered pest pressure has not been empirically assessed. RESULTS Field trials showed that Aphis gossypii abundance is lower and (relative) abundance of aphid predators higher in early-season cotton intercrops than in monocrops. Cage trials and Y-tube olfactometer tests further indicated that garlic and onion volatiles repel Aphis gossypii alates. Electrophysiological bioassays and gas chromatography-mass spectrometry (GC-MS) identified two physiologically active volatiles, that is, diallyl disulfide and propyl disulfide from garlic and onion respectively. Next, behavioral tests confirmed that both sulfur compounds exert a repellent effect on alate Aphis gossypii. CONCLUSION Garlic and onion volatiles interfere with Aphis gossypii settling, but do not affect its main (ladybird) predators. Meanwhile, early-season cotton/onion intercrops bear higher numbers of Aphis gossypii predators and fewer aphids. By thus unveiling the ecological underpinnings of aphid biological control in diversified cropping systems, our work advances non-chemical management of a globally-important crop pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanxue Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ying Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
9
|
Mazur M, Zych KM, Obmińska-Mrukowicz B, Pawlak A. Microbial Transformations of Halolactones and Evaluation of Their Antiproliferative Activity. Int J Mol Sci 2023; 24:ijms24087587. [PMID: 37108750 PMCID: PMC10144491 DOI: 10.3390/ijms24087587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The microbial transformations of lactones with a halogenoethylocyclohexane moiety were performed in a filamentous fungi culture. The selected, effective biocatalyst for this process was the Absidia glauca AM177 strain. The lactones were transformed into the hydroxy derivative, regardless of the type of halogen atom in the substrate structure. For all lactones, the antiproliferative activity was determined toward several cancer cell lines. The antiproliferative potential of halolactones was much broader than that observed for the hydroxyderivative. According to the presented results, the most potent was chlorolactone, which exhibited significant activity toward the T-cell lymphoma line (CL-1) cell line. The hydroxyderivative obtained through biotransformation was not previously described in the literature.
Collapse
Affiliation(s)
- Marcelina Mazur
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Karolina Maria Zych
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland
| |
Collapse
|
10
|
Antifeedant Potential of Geranylacetone and Nerylacetone and Their Epoxy-Derivatives against Myzus persicae (Sulz.). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248871. [PMID: 36558003 PMCID: PMC9784399 DOI: 10.3390/molecules27248871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Geranylacetone and nerylacetone are natural sesquiterpenoids, which play various roles in plant-insect interactions, including the deterrent and repellent effects on herbivores. The structural modifications of natural compounds often change their biological activities. The aim of the study was to evaluate the effect of geranylacetone, nerylacetone and their epoxy-derivatives on the probing and settling behavior of Myzus persicae (Sulz.) (Hemiptera: Aphididae). The no-choice test using the Electrical Penetration Graph (EPG) technique showed that the probes before the first phloem phase were usually shorter than 3 min, which means that they were terminated within the epidermis and/or outer layers of mesophyll. This resulted in a tendency to delay the initiation of the phloem phase in aphids, which reflects a weak preingestive deterrent activity of the studied compounds at the level of non-vascular tissues. Most M. persicae showed bouts of sustained phloem sap ingestion. However, the 24-h free-choice test demonstrated that aphids did not settle on the leaves treated with geranylacetone, nerylacetone, and their epoxy-derivatives. The refusal to settle after the consumption of phloem sap on treated plants indicated that the studied compounds had postingestive deterrent activity. The epoxidation of geranylacetone and nerylacetone did not evoke significant changes in their activity profiles.
Collapse
|
11
|
Mota TF, Silva CMDA, Conceição MDS, Fraga DBM, Brodskyn CI, Neto MFDA, Santana IB, Mesquita PRR, Leite FHA, Magalhães-Júnior JT. Screening organic repellent compounds against Lutzomyia longipalpis (Diptera: Psychodidae) present in plant essential oils: Bioassay plus an in silico approach. Acta Trop 2022; 229:106367. [PMID: 35167802 DOI: 10.1016/j.actatropica.2022.106367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022]
Abstract
In the Americas, Lutzomyia longipalpis is the most relevant sand fly species for the transmission of visceral leishmaniasis. For its vector control in Brazil, insecticide spraying has not shown persistent reduction in disease prevalence while some sand fly populations are reported resistant to the insecticides used in spraying. The usage of repellents and personal protection behavior can reduce vector borne diseases prevalence. Therefore, the search for new repellent compounds is needed to use together with insecticide spraying, especially from natural sources to overcome the resistance developed by some sand fly populations to the compounds commercially used. In silico strategies have been applied together with repellency bioassays successfully identifying new bioactive compounds from natural sources. Thus, the present study aimed to screen repellent potential of neem (Azadirachta indica), citronella (Cymbopogon winterianus), bushy matgrass (Lippia alba) and 'alecrim do mato' (Lippia thymoides) essential oils against L. longipalpis and to identify potential repellent compounds by chemical analysis and in silico approach. Plant essential oils were extracted from leaves and repellency bioassays were performed on volunteers using colony reared L. longipalpis. Aside from neem oil, all other tested essential oil has shown a reduced number of sand fly bites using higher concentrations. Chemical composition from oils was assessed and its compounds were screened on a pharmacophore model using odorant binding protein 1 (OBP1). All essential oils were majorly composed of either oxygenated monoterpenes, except for the oil extracted from neem which was composed of sesquiterpene hydrocarbons. Molecular docking was performed with the compounds that best superimposed in the OBP1 pharmacophore model, identifying those binding to OBP4, which is associated with insect repellency behavior. Citronellol, Citronellol acetate, Citronellal and Geranyl acetate showed similar interactions with OBP4 binding site as DEET. Thus, it is suggested that these compounds are able to bind to L. longipalpis OBP4 generating repellent behavior in sand flies.
Collapse
Affiliation(s)
- Tiago F Mota
- Laboratório de Interação Parasito-Hospedeiro e Epidemiologia (LaIPHE), Instituto Gonçalo Moniz (IGM), FIOCRUZ-BA, Rua Waldemar Falcão, 121 Candeal, 40296-710, Salvador, Bahia, Brazil.
| | - Caliene M de A Silva
- Centro Multidisciplinar do Campus de Barra da Universidade Federal do Oeste da Bahia, Bahia, Brasil
| | - Maurício Dos S Conceição
- Centro Multidisciplinar do Campus de Barra da Universidade Federal do Oeste da Bahia, Bahia, Brasil
| | - Deborah B M Fraga
- Laboratório de Interação Parasito-Hospedeiro e Epidemiologia (LaIPHE), Instituto Gonçalo Moniz (IGM), FIOCRUZ-BA, Rua Waldemar Falcão, 121 Candeal, 40296-710, Salvador, Bahia, Brazil; Departamento de Medicina Veterinária Preventiva e Produção Animal, Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Av. Adhemar de Barros, 500 Ondina, 40170-110, Salvador, Bahia, Brazil
| | - Claudia I Brodskyn
- Laboratório de Interação Parasito-Hospedeiro e Epidemiologia (LaIPHE), Instituto Gonçalo Moniz (IGM), FIOCRUZ-BA, Rua Waldemar Falcão, 121 Candeal, 40296-710, Salvador, Bahia, Brazil
| | - Moysés F de A Neto
- Laboratório de Modelagem Molecular, Departamento de Saúde, Universidade Estadual de Feira de Santana, Bahia, Brasil
| | - Isis B Santana
- Laboratório de Modelagem Molecular, Departamento de Saúde, Universidade Estadual de Feira de Santana, Bahia, Brasil
| | - Paulo R R Mesquita
- Centro Tecnológico Agropecuário do Estado da Bahia (CETAB), Bahia, Brazil; Faculdade Maria Milza, Bahia, Brazil
| | - Franco H A Leite
- Laboratório de Modelagem Molecular, Departamento de Saúde, Universidade Estadual de Feira de Santana, Bahia, Brasil
| | - Jairo T Magalhães-Júnior
- Centro Multidisciplinar do Campus de Barra da Universidade Federal do Oeste da Bahia, Bahia, Brasil
| |
Collapse
|
12
|
Process optimization for production and purification of γ-decalactone from ricinoleic acid using Yarrowia lipolytica NCIM 3590. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Seres-Bokor A, Kemény KK, Taherigorji H, Schaffer A, Kothencz A, Gáspár R, Ducza E. The Effect of Citral on Aquaporin 5 and Trpv4 Expressions and Uterine Contraction in Rat-An Alternative Mechanism. Life (Basel) 2021; 11:life11090897. [PMID: 34575046 PMCID: PMC8467203 DOI: 10.3390/life11090897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/15/2023] Open
Abstract
Aquaporins (AQPs) are expressed in the uterus, playing a physiological role during pregnancy. An osmotic pathway—through AQP5—may modify the transient potential vanilloid 4 (TRPV4) function and uterine contraction. Our aim was to determine the role of TRPV4 antagonist citral in the regulation of pregnant uterine contraction. In vitro uterine contractions were evoked by KCl and the response was modified with citral. The expressions of TRPV4 and AQP5 were measured by RT-PCR and Western blot techniques. The lengths of gestational periods were determined in normal and LPS-induced preterm births after citral treatment, in vivo. Citral significantly decreased the uterine contraction on day 22 of pregnancy. AQP5 expression significantly increased after citral incubation; however, TRPV4 expression did not show significant changes. After citral pretreatment, the gestational period was extended both in normal and LPS-induced preterm births. Our results suppose that the downregulation of AQP5 may initiate hypertonic stress, activating TRPV4 the uterine contraction on the last day of the gestational period. The putative cooperation between AQP5 and TRPV4 may open a novel target to treat or prevent preterm birth.
Collapse
Affiliation(s)
- Adrienn Seres-Bokor
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., 6720 Szeged, Hungary; (A.S.-B.); (K.K.K.); (H.T.)
| | - Kata Kira Kemény
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., 6720 Szeged, Hungary; (A.S.-B.); (K.K.K.); (H.T.)
| | - Hoda Taherigorji
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., 6720 Szeged, Hungary; (A.S.-B.); (K.K.K.); (H.T.)
| | - Annamária Schaffer
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12., 6721 Szeged, Hungary; (A.S.); (A.K.); (R.G.)
| | - Anna Kothencz
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12., 6721 Szeged, Hungary; (A.S.); (A.K.); (R.G.)
| | - Róbert Gáspár
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12., 6721 Szeged, Hungary; (A.S.); (A.K.); (R.G.)
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., 6720 Szeged, Hungary; (A.S.-B.); (K.K.K.); (H.T.)
- Correspondence: ; Tel.: +36-62-545-567
| |
Collapse
|
14
|
Stec K, Kordan B, Gabryś B. Effect of Soy Leaf Flavonoids on Pea Aphid Probing Behavior. INSECTS 2021; 12:756. [PMID: 34442322 PMCID: PMC8396875 DOI: 10.3390/insects12080756] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Flavonoids detected in soybean Glycine max (L.) Merr. (Fabaceae) cause various alterations in the metabolism, behavior, and development of insect herbivores. The pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) poses potential threat to soybeans, but the effect of individual flavonoids on its feeding-associated behavior is relatively unknown. We monitored probing behavior (stylet penetration activities) of A. pisum on its preferred host plant, Pisum sativum L. untreated (control) and treated with 0.1% ethanolic solutions of flavonoids apigenin, daidzein, genistein, and kaempferol. We applied the electrical penetration graph (electropenetrography, EPG) technique, which visualizes the movements of aphid stylets within plant tissues. None of the applied flavonoids affected the propensity to probe the plants by A. pisum. However, apigenin enhanced the duration of probes in non-phloem tissues, which caused an increase in the frequency and duration of stylet mechanics derailment and xylem sap ingestion but limited the ingestion of phloem sap. Daidzein caused a delay in reaching phloem vessels and limited sap ingestion. Kaempferol caused a reduction in the frequency and duration of the phloem phase. Genistein did not affect aphid probing behavior. Our findings provide information for selective breeding programs of resistant plant cultivars to A. pisum.
Collapse
Affiliation(s)
- Katarzyna Stec
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland;
| | - Bożena Kordan
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland;
| | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland;
| |
Collapse
|
15
|
Antixenosis in Glycine max (L.) Merr against Acyrthosiphon pisum (Harris). Sci Rep 2021; 11:15289. [PMID: 34315988 PMCID: PMC8316357 DOI: 10.1038/s41598-021-94703-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
To reveal the antixenosis potential against the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) we analyzed the pea aphid survival and probing behavior, and the quantitative and qualitative variation of flavonoids in the leaves of selected soybean Glycine max (L.) Merr (Fabaceae) cultivars 'Aldana', 'Annushka', 'Augusta', 'Madlen', 'Mavka', 'Simona', 'Violetta', and 'Viorica'. Aphid survival was drastically impeded on all cultivars. The electronic monitoring of aphid probing using the Electrical Penetration Graph (EPG) technique revealed that on all soybean cultivars, A. pisum readily probed into leaf tissues but the probes were usually terminated before reaching vascular tissues, which demonstrates the activity of antixenosis mechanisms in peripheral tissues epidermis and/or mesophyll in soybean leaves. The potency of antixenosis factors differed among soybean cultivars, which was reflected in differences in aphid survival and frequency and duration of phloem sap ingestion. Seven flavonoids were found: apigenin, daidzein, genistein, glycitein, isorhamnetin, kaempferol, and rutin, which occurred in different amount and proportion in individual cultivars. The content of apigenin and genistein in all soybean cultivars studied probably made them relatively unacceptable to A. pisum. Kaempferol in 'Aldana' might be responsible for the observed strong antixenosis resistance of this cultivar to A. pisum. The results of our survey provide the first detailed data that can be used for future studies.
Collapse
|
16
|
Dancewicz K, Gabryś B, Morkunas I, Samardakiewicz S. Probing behavior of Adelges laricis Vallot (Hemiptera: Adelgidae) on Larix decidua Mill: Description and analysis of EPG waveforms. PLoS One 2021; 16:e0251663. [PMID: 34003844 PMCID: PMC8130970 DOI: 10.1371/journal.pone.0251663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2021] [Indexed: 01/10/2023] Open
Abstract
Adelgidae are a sister group of Aphididae and Phylloxeridae within Hemiptera, Aphidoidea and occur exclusively on Pinaceae. The piercing-sucking mouthparts of Adelgidae are similar to those of aphids and it is believed that adelgids ingest sap from both the non-vascular and vascular (phloem) tissues. The aim of the present study was to identify and characterize the adelgid stylet activities during their penetration in plant tissues. The probing behavior of Adelges laricis Vallot (Hemiptera: Adelgidae) on European larch Larix decidua Mill. and sucrose diets was monitored using the DC-EPG (Electrical Penetration Graph technique = electropenetrography). The EPG waveforms were described based on amplitude, frequency, voltage level, and electrical origin of the observed traces, and associated with putative behavioral activities based on analogy with aphid activities. Waveform frequency, duration, and sequence were analysed as well. A. laricis generated EPG signals at two clearly distinct voltage levels positive and negative, suggesting extracellular and intracellular stylet penetration, respectively. The adelgid EPG patterns were ascribed to four behavioral phases, which were non-probing, pathway, phloem, and xylem phases. Non-probing referred to the position of the stylets outside the plant tissues. Pathway phase was represented by three waveform patterns that visualized extracellular stylet penetration in non-vascular tissues without potential drops (AC1), with serial short (1.2–1.5 s) potential drops (AC2), and with ‘aphid-like’ (5–10 s) potential drops (AC3). Phloem phase comprised three waveform patterns at intracellular level, which in all probability represented phloem salivation (AE1), and phloem sap passive (AE2) and active ingestion (AE3). AE3 was a newly described waveform, previously unreported from Hemiptera. Waveform AG represented the ingestion of xylem sap. The comparative analysis demonstrated that the gymnosperm-associated adelgids show certain similarities in probing behavior typical of aphids and phylloxerids on angiosperm plants. The present work is the first detailed analysis of specific adelgid stylet activities on gymnosperms.
Collapse
Affiliation(s)
- Katarzyna Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
- * E-mail:
| | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|