1
|
Khalid H, Sattar F, Ahmad I, Junior VFDP, Nishan U, Ullah R, Dib H, Omari KW, Shah M. Computer-assisted discovery of natural inhibitors for platelet-derived growth factor alpha as novel therapeutics for thyroid cancer. Front Pharmacol 2025; 15:1512864. [PMID: 39850565 PMCID: PMC11754405 DOI: 10.3389/fphar.2024.1512864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Platelet-derived growth factor alpha (PDGFRA) plays a significant role in various malignant tumors. PDGFRA expression boosts thyroid cancer cell proliferation and metastasis. Radiorefractory thyroid cancer is poorly differentiated, very aggressive, and resistant to radioiodine therapy. Thus, novel anticancer drugs that inhibit its metastasis are urgently required. In this context, we proposed the PDGFRA inhibitors by an optimized structure-based drug design approach. We performed a virtual screening of metabolites derived from anticancer medicinal plants (Swertia chirayita, Myristica fragrans, and Datura metel) and successfully identified seven hits, namely cis-Grossamide K, Daturafoliside O, N-cis-feruloyltyramine, Maceneolignan H, Erythro-2-(4-allyl-2, 6-dimethoxyphenoxy)-1-(3, 4, 5-trimethoxyphenyl) propan-1, 3-diol, Myrifralignan C, and stigmasteryl-3-O-β-glucoside as potential PDGFRA inhibitors. Not only the top 7 hits exhibited higher docking scores in docking simulation but also optimal drug-likeness and non-toxic profiles in pharmacokinetics analysis among 119 compounds. Our top hits are non-mutagenic, can cross the blood-brain barrier, and inhibit p-glycoprotein, while the N-cis-feruloyltyramine has the potential to become a lead compound. The protein-ligand stability of the top 3 hits, namely cis-Grossamide K, Daturafoliside O, and N-cis-feruloyltyramine, and their interactions at the potential binding site of target protein were confirmed through molecular dynamic simulations. We also analyzed pharmacophoric features for stable binding in the PDGFRA active site. These drug candidates were further characterized to predict their biological activity spectra in the human body and medicinal characteristics to know their extensive behavior in laboratory testing. This study necessitates the in-vitro and in-vivo studies to confirm the potential of our hits for the discovery of novel therapeutics against the thyroid cancer.
Collapse
Affiliation(s)
- Hira Khalid
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Farah Sattar
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Valdir Ferreira de Paula Junior
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Brazil
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Umar Nishan
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Khaled W. Omari
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
2
|
Khattabi KE, Lemriss S, Jaoudi RE, Zouaidia F. Molecular docking and simulation analysis of c-KIT and PDGFRα with phytochemicals as dual inhibitors for GIST. Bioinformation 2024; 20:974-979. [PMID: 39917203 PMCID: PMC11795502 DOI: 10.6026/973206300200974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 02/09/2025] Open
Abstract
Mutations in the c-KIT or PDGFRα genes primarily drive gastrointestinal stromal tumors (GISTs). While tyrosine kinase inhibitors (TKIs) such as Imatinib have improved outcomes, resistance due to secondary mutations remains a significant challenge. This study used computational methods to identify phytochemicals from Moroccan plants as dual inhibitors of c-KIT and PDGFRα. Screening 545 phytochemicals, 6-Hydroxygenistein (6-OHG), a derivative of Genistein, showed high binding affinities (-10.3 kcal/mol for PDGFRα and -10.5 kcal/mol for c-KIT), comparable to Imatinib. 6-OHG demonstrated competitive binding affinities, favorable ADMET properties, good solubility, and oral bioavailability. Its antioxidant properties suggest a potentially lower toxicity profile. Interaction analysis revealed significant hydrogen bonds and hydrophobic interactions with key residues in both targets. Molecular dynamics simulations over 30 ns indicated stable complexes with consistent RMSD values, radius of gyration, solvent-accessible surface area, and hydrogen bonding patterns. Free binding energy calculations using the MM-PBSA method highlighted strong binding efficacy, with total binding energies of -278.0kcal/mol for PDGFRα and -202.1kcal/mol for c-KIT, surpassing Imatinib. These findings suggest that 6-OHG is a promising dual inhibitor for GIST therapy, potentially overcoming resistance mechanisms associated with current TKIs. However, further experimental validation is necessary to fully understand it's potential.
Collapse
Affiliation(s)
- Kaoutar El Khattabi
- Medical Biotechnology Laboratory, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Sanaa Lemriss
- Department of Biosecurity PCL3, Laboratory of Research and Medical Analysis of the Fraternal of Gendarmerie Royale, Rabat, Morocco
| | - Rachid El Jaoudi
- Medical Biotechnology Laboratory, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Fouad Zouaidia
- Medical Biotechnology Laboratory, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Pathology Department, Ibn Sina University Hospital, Rabat, Morocco
| |
Collapse
|
3
|
Gariganti N, Bandi A, Gatta KN, Pagag J, Guruprasad L, Poola B, Kottalanka RK. Design, synthesis, in-silico studies and apoptotic activity of novel amide enriched 2-(1 H)- quinazolinone derivatives. Heliyon 2024; 10:e30292. [PMID: 38711664 PMCID: PMC11070864 DOI: 10.1016/j.heliyon.2024.e30292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Cancer is a broad classification of diseases that can affect any organ or body tissue due to aberrant cellular proliferation for unknown reasons. Many present chemotherapeutic drugs are highly toxic and have little selectivity. Additionally, they lead to the development of medication resistance. Therefore, developing tailored chemotherapeutic drugs with minimal side effects and good selectivity is crucial for cancer treatment. 2-(1H)-Quinazolinone is one of the vital scaffold and anticancer activity is one of the prominent biological activities of this class. Here we report the novel set of amide-enriched 2-(1H)-quinazolinone derivatives (7a-j) and their apoptotic activity with the help of MTT assay method against four human cancer cell lines: PC3 (prostate cancer), DU-145 (prostate cancer), A549 (lung cancer), and MCF7 (breast cancer). When compared to etoposide, every synthetic test compound (7a-j) exhibited moderate to excellent activity. The IC50 values of the new amide derivatives (7a-j) varied from 0.07 ± 0.0061 μM to 10.8 ± 0.69 μM. While the positive control, etoposide, exhibited 1.97 ± 0.45 μM to 3.08 ± 0.135 μM range. Among the novel amide derivatives (7a-j), in particular, 7i and 7j showed strong apoptotic activity against MCF7; 7h showed against PC3, and 7g showed against DU-145. Molecular docking studies of test compounds (7a-j) with the EGFR tyrosine kinase domain (PDB ID: 1M17) protein provided the significant docking scores for each test compound (7a-j) (-9.00 to -9.67 kcal/mol). Additionally, DFT investigations and MD simulations validated the predictions of molecular docking. According to the findings of the ADME analysis, oral absorption by humans is anticipated to be higher than 85 % for all test compounds.
Collapse
Affiliation(s)
- Naganjaneyulu Gariganti
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, 522213, India
- Neuland Laboratories Ltd., Hyderabad, Telangana, 500034, India
| | - Anjaneyulu Bandi
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - K.R.S. Naresh Gatta
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jishu Pagag
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Lalitha Guruprasad
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Bhaskar Poola
- Neuland Laboratories Ltd., Hyderabad, Telangana, 500034, India
| | - Ravi K. Kottalanka
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, 522213, India
| |
Collapse
|
4
|
Polo-Cuadrado E, López-Cuellar L, Acosta-Quiroga K, Rojas-Peña C, Brito I, Cisterna J, Trilleras J, Alderete JB, Duarte Y, Gutiérrez M. Comprehensive analysis of crystal structure, spectroscopic properties, quantum chemical insights, and molecular docking studies of two pyrazolopyridine compounds: potential anticancer agents. RSC Adv 2023; 13:30118-30128. [PMID: 37849708 PMCID: PMC10578360 DOI: 10.1039/d3ra04874h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023] Open
Abstract
In this study, two pyrazolo[3,4-b]pyridine derivatives (4a and 4b) were grown using a slow evaporation solution growth technique and characterized by FT-IR, HRMS, 1H/13C NMR spectroscopy, and X-ray crystallography. The 4a and 4b structures crystallized in monoclinic and triclinic systems with space groups P21/n and P1̄, respectively. Theoretical calculations were performed at the DFT/B3LYP level for the optimized geometries. The results were in excellent agreement with the experimental data (spectroscopic and XRD). This investigation encompasses molecular modeling studies including Hirshfeld surface analysis, energy framework calculations, and frontier molecular orbital analysis. Intermolecular interactions within the crystal structures of the compounds were explored through Hirshfeld surface analysis, which revealed the notable presence of hydrogen bonding and hydrophobic interactions. This insight provides valuable information on the structural stability and potential solubility characteristics of these compounds. The research was extended to docking analysis with eight distinct kinases (BRAF, HER2, CSF1R, MEK2, PDGFRA, JAK, AKT1, and AKT2). The results of this analysis demonstrate that both 4a and 4b interact effectively with the kinase-binding sites through a combination of hydrophobic interactions and hydrogen bonding. Compound 4a had the best affinity for proteins; this is related to the fact that the compound is not rigid and has a small size, allowing it to sit well at any binding site. This study contributes to the advancement of kinase inhibitor research and offers potential avenues for the development of new therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Efraín Polo-Cuadrado
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Lorena López-Cuellar
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Karen Acosta-Quiroga
- Doctorado en Química, Departamento de Química Inorgánica y Analítica, Universidad de Chile Santiago Chile
| | - Cristian Rojas-Peña
- Doctorado en Química, Departamento de Química Inorgánica y Analítica, Universidad de Chile Santiago Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta Avenida. Universidad de Antofagasta, Campus Coloso Antofagasta 02800 Chile
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Sede Casa Central, Av. Angamos 0610 Antofagasta Chile
| | - Jorge Trilleras
- Grupo de Investigación en Compuestos Heterocíclicos, Universidad del Atlántico Puerto Colombia 081007 Colombia
| | - Joel B Alderete
- Instituto de Química de Recursos Naturales (IQRN), Universidad de Talca Avenida Lircay S/N, Casilla 747 Talca Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad, Andrés Bello Av. Republica 330 Santiago 8370146 Chile
- Interdisciplinary Centre for Neuroscience of Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso 2381850 Chile
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
5
|
Su Y, Chen S, Liu S, Wang Y, Chen X, Xu M, Cai S, Pan N, Qiao K, Chen B, Yang S, Liu Z. Affinity Purification and Molecular Characterization of Angiotensin-Converting Enzyme (ACE)-Inhibitory Peptides from Takifugu flavidus. Mar Drugs 2023; 21:522. [PMID: 37888457 PMCID: PMC10608451 DOI: 10.3390/md21100522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
An affinity chromatography filler of CNBr-activated Sepharose 4B-immobilized ACE was used to purify ACE-inhibitory peptides from Takifugu flavidus protein hydrolysate (<1 kDa). Twenty-four peptides with an average local confidence score (ALC) ≥ 80% from bounded components (eluted by 1 M NaCl) were identified by LC-MS/MS. Among them, a novel peptide, TLRFALHGME, with ACE-inhibitory activity (IC50 = 93.5 µmol·L-1) was selected. Molecular docking revealed that TLRFALHGME may interact with the active site of ACE through H-bond, hydrophobic, and electrostatic interactions. The total binding energy (ΔGbinding) of TLRFALHGME was estimated to be -82.7382 kJ·mol-1 by MD simulations, indicating the favorable binding of peptides with ACE. Furthermore, the binding affinity of TLRFALHGME to ACE was determined by surface plasmon resonance (SPR) with a Kd of 80.9 µmol, indicating that there was a direct molecular interaction between them. TLRFALHGME has great potential for the treatment of hypertension.
Collapse
Affiliation(s)
- Yongchang Su
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Shicheng Chen
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL 60015, USA;
| | - Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Yin Wang
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Xiaoting Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Min Xu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Shuilin Cai
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Nan Pan
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Suping Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| |
Collapse
|
6
|
Mozzicafreddo M, Benfaremo D, Paolini C, Agarbati S, Svegliati Baroni S, Moroncini G. Screening and Analysis of Possible Drugs Binding to PDGFRα: A Molecular Modeling Study. Int J Mol Sci 2023; 24:ijms24119623. [PMID: 37298573 DOI: 10.3390/ijms24119623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 06/12/2023] Open
Abstract
The platelet-derived growth factor receptor (PDGFR) is a membrane tyrosine kinase receptor involved in several metabolic pathways, not only physiological but also pathological, as in tumor progression, immune-mediated diseases, and viral diseases. Considering this macromolecule as a druggable target for modulation/inhibition of these conditions, the aim of this work was to find new ligands or new information to design novel effective drugs. We performed an initial interaction screening with the human intracellular PDGFRα of about 7200 drugs and natural compounds contained in 5 independent databases/libraries implemented in the MTiOpenScreen web server. After the selection of 27 compounds, a structural analysis of the obtained complexes was performed. Three-dimensional quantitative structure-activity relationship (3D-QSAR) and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses were also performed to understand the physicochemical properties of identified compounds to increase affinity and selectivity for PDGFRα. Among these 27 compounds, the drugs Bafetinib, Radotinib, Flumatinib, and Imatinib showed higher affinity for this tyrosine kinase receptor, lying in the nanomolar order, while the natural products included in this group, such as curcumin, luteolin, and epigallocatechin gallate (EGCG), showed sub-micromolar affinities. Although experimental studies are mandatory to fully understand the mechanisms behind PDGFRα inhibitors, the structural information obtained through this study could provide useful insight into the future development of more effective and targeted treatments for PDGFRα-related diseases, such as cancer and fibrosis.
Collapse
Affiliation(s)
- Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Devis Benfaremo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Chiara Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Silvia Svegliati Baroni
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| |
Collapse
|
7
|
Zhai LH, Chen KF, Hao BB, Tan MJ. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol Sin 2022; 43:3112-3129. [PMID: 36372853 PMCID: PMC9712763 DOI: 10.1038/s41401-022-01017-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
Abstract
Protein post-translational modifications (PTMs), which are usually enzymatically catalyzed, are major regulators of protein activity and involved in almost all celluar processes. Dysregulation of PTMs is associated with various types of diseases. Therefore, PTM regulatory enzymes represent as an attractive and important class of targets in drug research and development. Inhibitors against kinases, methyltransferases, deacetyltransferases, ubiquitin ligases have achieved remarkable success in clinical application. Mass spectrometry-based proteomics technologies serve as a powerful approach for system-wide characterization of PTMs, which facilitates the identification of drug targets, elucidation of the mechanisms of action of drugs, and discovery of biomakers in personalized therapy. In this review, we summarize recent advances of proteomics-based studies on PTM targeting drugs and discuss how proteomics strategies facilicate drug target identification, mechanism elucidation, and new therapy development in precision medicine.
Collapse
Affiliation(s)
- Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China
| | - Kai-Feng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China.
| |
Collapse
|
8
|
Binding Studies and Lead Generation of Pteridin-7(8H)-one Derivatives Targeting FLT3. Int J Mol Sci 2022; 23:ijms23147696. [PMID: 35887060 PMCID: PMC9319409 DOI: 10.3390/ijms23147696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Ligand modification by substituting chemical groups within the binding pocket is a popular strategy for kinase drug development. In this study, a series of pteridin-7(8H)-one derivatives targeting wild-type FMS-like tyrosine kinase-3 (FLT3) and its D835Y mutant (FL3D835Y) were studied using a combination of molecular modeling techniques, such as docking, molecular dynamics (MD), binding energy calculation, and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies. We determined the protein–ligand binding affinity by employing molecular mechanics Poisson–Boltzmann/generalized Born surface area (MM-PB/GBSA), fast pulling ligand (FPL) simulation, linear interaction energy (LIE), umbrella sampling (US), and free energy perturbation (FEP) scoring functions. The structure–activity relationship (SAR) study was conducted using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), and the results were emphasized as a SAR scheme. In both the CoMFA and CoMSIA models, satisfactory correlation statistics were obtained between the observed and predicted inhibitory activity. The MD and SAR models were co-utilized to design several new compounds, and their inhibitory activities were anticipated using the CoMSIA model. The designed compounds with higher predicted pIC50 values than the most active compound were carried out for binding free energy evaluation to wild-type and mutant receptors using MM-PB/GBSA, LIE, and FEP methods.
Collapse
|
9
|
Yang C, Mai Z, Liu C, Yin S, Cai Y, Xia C. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113513. [PMID: 35684449 PMCID: PMC9181879 DOI: 10.3390/molecules27113513] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
Abstract
Drug resistance is still an obstacle in cancer therapy, leading to the failure of tumor treatment. The emergence of tumor drug resistance has always been a main concern of oncologists. Therefore, overcoming tumor drug resistance and looking for new strategies for tumor treatment is a major focus in the field of tumor research. Natural products serve as effective substances against drug resistance because of their diverse chemical structures and pharmacological effects. We reviewed the signaling pathways involved in the development of tumor drug resistance, including Epidermal growth factor receptor (EGFR), Renin-angiotensin system (Ras), Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), Wnt, Notch, Transforming growth factor-beta (TGF-β), and their specific signaling pathway inhibitors derived from natural products. This can provide new ideas for the prevention of drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People’s Hospital of Shantou University, Shaoguan 512027, China;
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- Correspondence: (Y.C.); (C.X.)
| | - Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Y.C.); (C.X.)
| |
Collapse
|
10
|
Xu Y, Hu W, Xiao K, Wang F, Guan W, Zong L. The current state of chemotherapy for the treatment of gastrointestinal stromal tumors with different genotypes: a narrative review. JOURNAL OF BIO-X RESEARCH 2022; 05:14-17. [DOI: 10.1097/jbr.0000000000000113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasm of the digestive system and are not sensitive to traditional chemotherapy. Therefore, historically, surgical resection was the only effective therapy. However, the emergence of tyrosine kinase inhibitors (TKIs) has revolutionized the treatment of GISTs, because they target c-Kit and PDGF receptor-α (PDGFRA), which are important in GIST development and progression. As research into c-Kit and PDGFRA continues, an increasing number of different TKIs are being used in the clinical setting. This review aims to discuss the current state of chemotherapy for the treatment of GISTs with different genotypes.
Collapse
Affiliation(s)
- Yingying Xu
- Department of General Surgery, Yizhen People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province,
| | - Wenqing Hu
- Department of Gastrointestinal Surgery, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College,
| | - Keyuan Xiao
- Central Laboratory, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province,
| | - Feng Wang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wenxian Guan
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liang Zong
- Department of Gastrointestinal Surgery, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College,
- Central Laboratory, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province,
| |
Collapse
|
11
|
Guo JJ, Tang XB, Qian QF, Zhuo ML, Lin LW, Xue ES, Chen ZK. Application of ultrasonography in predicting the biological risk of gastrointestinal stromal tumors. Scand J Gastroenterol 2022; 57:352-358. [PMID: 34779685 DOI: 10.1080/00365521.2021.2002396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To explore and establish a reliable and noninvasive ultrasound model for predicting the biological risk of gastrointestinal stromal tumors (GISTs). MATERIALS AND METHODS We retrospectively reviewed 266 patients with pathologically-confirmed GISTs and 191 patients were included. Data on patient sex, age, tumor location, biological risk classification, internal echo, echo homogeneity, boundary, shape, blood flow signals, presence of necrotic cystic degeneration, long diameter, and short/long (S/L) diameter ratio were collected. All patients were divided into low-, moderate-, and high-risk groups according to the modified NIH classification criteria. All indicators were analyzed by univariate analysis. The indicators with inter-group differences were used to establish regression and decision tree models to predict the biological risk of GISTs. RESULTS There were statistically significant differences in long diameter, S/L ratio, internal echo level, echo homogeneity, boundary, shape, necrotic cystic degeneration, and blood flow signals among the low-, moderate-, and high-risk groups (all p < .05). The logistic regression model based on the echo homogeneity, shape, necrotic cystic degeneration and blood flow signals had an accuracy rate of 76.96% for predicting the biological risk, which was higher than the 72.77% of the decision tree model (based on the long diameter, the location of tumor origin, echo homogeneity, shape, and internal echo) (p = .008). In the low-risk and high-risk groups, the predicting accuracy rates of the regression model reached 87.34 and 81.82%, respectively. CONCLUSIONS Transabdominal ultrasound is highly valuable in predicting the biological risk of GISTs. The logistic regression model has greater predictive value than the decision tree model.
Collapse
Affiliation(s)
- Jing-Jing Guo
- Department of Ultrasound, Fujian Medical University Affiliated Union Hospital, Fuzhou, Fujian, China
| | - Xiu-Bin Tang
- Department of Ultrasound, Fujian Medical University Affiliated Union Hospital, Fuzhou, Fujian, China
| | - Qing-Fu Qian
- Department of Ultrasound, Fujian Medical University Affiliated Union Hospital, Fuzhou, Fujian, China
| | - Min-Ling Zhuo
- Department of Ultrasound, Fujian Medical University Affiliated Union Hospital, Fuzhou, Fujian, China
| | - Li-Wu Lin
- Department of Ultrasound, Fujian Medical University Affiliated Union Hospital, Fuzhou, Fujian, China
| | - En-Sheng Xue
- Department of Ultrasound, Fujian Medical University Affiliated Union Hospital, Fuzhou, Fujian, China
| | - Zhi-Kui Chen
- Department of Ultrasound, Fujian Medical University Affiliated Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Keretsu S, Ghosh S, Cho SJ. Computer aided designing of novel pyrrolopyridine derivatives as JAK1 inhibitors. Sci Rep 2021; 11:23051. [PMID: 34845259 PMCID: PMC8630053 DOI: 10.1038/s41598-021-02364-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Janus kinases (JAKs) are a family of non-receptor kinases that play a key role in cytokine signaling and their aberrant activities are associated with the pathogenesis of various immune diseases. The JAK1 isoform plays an essential role in the types 1 and II interferon signaling and elicits signals from the interleukin-2, interleukin-4, gp130, and class 2 receptor families. It is ubiquitously expressed in humans and its overexpression has been linked with autoimmune diseases such as myeloproliferative neoplasm. Although JAK1 inhibitors such as Tofacitinib have been approved for medical use, the low potency and off-target effects of these inhibitors have limited their use and calls for the development of novel JAK1 inhibitors. In this study, we used computational methods on a series of pyrrolopyridine derivatives to design new JAK1 inhibitors. Molecular docking and molecular dynamics simulation methods were used to study the protein-inhibitor interactions. 3D-quantitative structure–activity relationship models were developed and were used to predict the activity of newly designed compounds. Free energy calculation methods were used to study the binding affinity of the inhibitors with JAK1. Of the designed compounds, seventeen of the compounds showed a higher binding energy value than the most active compound in the dataset and at least six of the compounds showed higher binding energy value than the pan JAK inhibitor Tofacitinib. The findings made in this study could be utilized for the further development of JAK1 inhibitors.
Collapse
Affiliation(s)
- Seketoulie Keretsu
- Department of Biomedical Sciences, College of Medicine, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju, 501-759, Republic of Korea
| | - Suparna Ghosh
- Department of Biomedical Sciences, College of Medicine, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju, 501-759, Republic of Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of Medicine, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju, 501-759, Republic of Korea. .,Department of Cellular Molecular Medicine, College of Medicine, Chosun University, Gwangju, 501-759, Republic of Korea.
| |
Collapse
|
13
|
Sheik Amamuddy O, Afriyie Boateng R, Barozi V, Wavinya Nyamai D, Tastan Bishop Ö. Novel dynamic residue network analysis approaches to study allosteric modulation: SARS-CoV-2 M pro and its evolutionary mutations as a case study. Comput Struct Biotechnol J 2021; 19:6431-6455. [PMID: 34849191 PMCID: PMC8613987 DOI: 10.1016/j.csbj.2021.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 01/15/2023] Open
Abstract
The rational search for allosteric modulators and the allosteric mechanisms of these modulators in the presence of mutations is a relatively unexplored field. Here, we established novel in silico approaches and applied them to SARS-CoV-2 main protease (Mpro) as a case study. First, we identified six potential allosteric modulators. Then, we focused on understanding the allosteric effects of these modulators on each of its protomers. We introduced a new combinatorial approach and dynamic residue network (DRN) analysis algorithms to examine patterns of change and conservation of critical nodes, according to five independent criteria of network centrality. We observed highly conserved network hubs for each averaged DRN metric on the basis of their existence in both protomers in the absence and presence of all ligands (persistent hubs). We also detected ligand specific signal changes. Using eigencentrality (EC) persistent hubs and ligand introduced hubs we identified a residue communication path connecting the allosteric binding site to the catalytic site. Finally, we examined the effects of the mutations on the behavior of the protein in the presence of selected potential allosteric modulators and investigated the ligand stability. One crucial outcome was to show that EC centrality hubs form an allosteric communication path between the allosteric ligand binding site to the active site going through the interface residues of domains I and II; and this path was either weakened or lost in the presence of some of the mutations. Overall, the results revealed crucial aspects that need to be considered in rational computational drug discovery.
Collapse
Affiliation(s)
| | | | - Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Dorothy Wavinya Nyamai
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| |
Collapse
|
14
|
Molecular Modeling Studies of N-phenylpyrimidine-4-amine Derivatives for Inhibiting FMS-like Tyrosine Kinase-3. Int J Mol Sci 2021; 22:ijms222212511. [PMID: 34830393 PMCID: PMC8622510 DOI: 10.3390/ijms222212511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Overexpression and frequent mutations in FMS-like tyrosine kinase-3 (FLT3) are considered risk factors for severe acute myeloid leukemia (AML). Hyperactive FLT3 induces premature activation of multiple intracellular signaling pathways, resulting in cell proliferation and anti-apoptosis. We conducted the computational modeling studies of 40 pyrimidine-4,6-diamine-based compounds by integrating docking, molecular dynamics, and three-dimensional structure-activity relationship (3D-QSAR). Molecular docking showed that K644, C694, F691, E692, N701, D829, and F830 are critical residues for the binding of ligands at the hydrophobic active site. Molecular dynamics (MD), together with Molecular Mechanics Poison-Boltzmann/Generalized Born Surface Area, i.e., MM-PB(GB)SA, and linear interaction energy (LIE) estimation, provided critical information on the stability and binding affinity of the selected docked compounds. The MD study suggested that the mutation in the gatekeeper residue F691 exhibited a lower binding affinity to the ligand. Although, the mutation in D835 in the activation loop did not exhibit any significant change in the binding energy to the most active compound. We developed the ligand-based comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) models. CoMFA (q2 = 0.802, r2 = 0.983, and QF32 = 0.698) and CoMSIA (q2 = 0.725, r2 = 0.965 and QF32 = 0.668) established the structure-activity relationship (SAR) and showed a reasonable external predictive power. The contour maps from the CoMFA and CoMSIA models could explain valuable information about the favorable and unfavorable positions for chemical group substitution, which can increase or decrease the inhibitory activity of the compounds. In addition, we designed 30 novel compounds, and their predicted pIC50 values were assessed with the CoMSIA model, followed by the assessment of their physicochemical properties, bioavailability, and free energy calculation. The overall outcome could provide valuable information for designing and synthesizing more potent FLT3 inhibitors.
Collapse
|
15
|
Sheik Amamuddy O, Glenister M, Tshabalala T, Tastan Bishop Ö. MDM-TASK-web: MD-TASK and MODE-TASK web server for analyzing protein dynamics. Comput Struct Biotechnol J 2021; 19:5059-5071. [PMID: 34589183 PMCID: PMC8455658 DOI: 10.1016/j.csbj.2021.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
The web server, MDM-TASK-web, combines the MD-TASK and MODE-TASK software suites, which are aimed at the coarse-grained analysis of static and all-atom MD-simulated proteins, using a variety of non-conventional approaches, such as dynamic residue network analysis, perturbation-response scanning, dynamic cross-correlation, essential dynamics and normal mode analysis. Altogether, these tools allow for the exploration of protein dynamics at various levels of detail, spanning single residue perturbations and weighted contact network representations, to global residue centrality measurements and the investigation of global protein motion. Typically, following molecular dynamic simulations designed to investigate intrinsic and extrinsic protein perturbations (for instance induced by allosteric and orthosteric ligands, protein binding, temperature, pH and mutations), this selection of tools can be used to further describe protein dynamics. This may lead to the discovery of key residues involved in biological processes, such as drug resistance. The server simplifies the set-up required for running these tools and visualizing their results. Several scripts from the tool suites were updated and new ones were also added and integrated with 2D/3D visualization via the web interface. An embedded work-flow, integrated documentation and visualization tools shorten the number of steps to follow, starting from calculations to result visualization. The Django-powered web server (available at https://mdmtaskweb.rubi.ru.ac.za/) is compatible with all major web browsers. All scripts implemented in the web platform are freely available at https://github.com/RUBi-ZA/MD-TASK/tree/mdm-task-web and https://github.com/RUBi-ZA/MODE-TASK/tree/mdm-task-web.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Michael Glenister
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Thulani Tshabalala
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
16
|
Gu X, Ma S. Recent Advances in the Development of Pyrazolopyridines as Anticancer Agents. Anticancer Agents Med Chem 2021; 22:1643-1657. [PMID: 34488593 DOI: 10.2174/1871520621666210901102832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
Cancer, especially malignant tumor, is a serious threat to people's life and health. It is recognized as an enormous challenge in the 21st century. Continuous efforts are needed to overcome this problem. Pyrazolopyridine nucleus, similar in structure to purine, shows a variety of biological activities, which is mainly attributed to the antagonistic nature towards the natural purines in many biological processes. This has aroused enormous attention for many researchers. At present, a large number of new chemical entities containing pyrazolopyridine nucleus have been found as anticancer agents. In this review we summarize novel pyrazolopyridine-containing derivatives with biological activities. Furthermore, we outline the relationships between the structures of variously modified pyrazolopyridines and their anticancer activity.
Collapse
Affiliation(s)
- Xiaotong Gu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012. China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012. China
| |
Collapse
|
17
|
Ghosh S, Keretsu S, Cho SJ. Designing of the N-ethyl-4-(pyridin-4-yl)benzamide based potent ROCK1 inhibitors using docking, molecular dynamics, and 3D-QSAR. PeerJ 2021; 9:e11951. [PMID: 34434664 PMCID: PMC8359802 DOI: 10.7717/peerj.11951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/20/2021] [Indexed: 01/20/2023] Open
Abstract
Rho-associated kinase-1 (ROCK1) has been recognized for its pivotal role in heart diseases, different types of malignancy, and many neurological disorders. Hyperactivity of ROCK phosphorylates the protein kinase-C (PKC), which ultimately induces smooth muscle cell contraction in the vascular system. Inhibition of ROCK1 has been shown to be a promising therapy for patients with cardiovascular disease. In this study, we have conducted molecular modeling techniques such as docking, molecular dynamics (MD), and 3-Dimensional structure-activity relationship (3D-QSAR) on a series of N-ethyl-4-(pyridin-4-yl)benzamide-based compounds. Docking and MD showed critical interactions and binding affinities between ROCK1 and its inhibitors. To establish the structure-activity relationship (SAR) of the compounds, 3D-QSAR techniques such as Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were used. The CoMFA (q 2 = 0.774, r 2 = 0.965, ONC = 6, and r p r e d 2 = 0.703) and CoMSIA (q 2 = 0.676, r 2 = 0.949, ONC = 6, and r p r e d 2 = 0.548) both models have shown reasonable external predictive activity, and contour maps revealed favorable and unfavorable substitutions for chemical group modifications. Based on the contour maps, we have designed forty new compounds, among which, seven compounds exhibited higher predictive activity (pIC50). Further, we conducted the MD study, ADME/Tox, and SA score prediction using the seven newly designed compounds. The combination of docking, MD, and 3D-QSAR studies helps to understand the coherence modification of existing molecules. Our study may provide valuable insight into the development of more potent ROCK1 inhibitors.
Collapse
Affiliation(s)
- Suparna Ghosh
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, South Korea
| | - Seketoulie Keretsu
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, South Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, South Korea.,Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, South Korea
| |
Collapse
|
18
|
Ghosh S, Keretsu S, Cho SJ. Computational Modeling of Novel Phosphoinositol‐3‐kinase γ Inhibitors Using Molecular Docking, Molecular Dynamics, and
3D‐QSAR. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Suparna Ghosh
- Department of Biomedical Sciences, College of Medicine Chosun University Gwangju 501‐759 Republic of Korea
| | - Seketoulie Keretsu
- Department of Biomedical Sciences, College of Medicine Chosun University Gwangju 501‐759 Republic of Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of Medicine Chosun University Gwangju 501‐759 Republic of Korea
- Department of Cellular and Molecular Medicine, College of Medicine Chosun University Gwangju 501‐759 Republic of Korea
| |
Collapse
|