1
|
Serranilla M, Pressey JC, Woodin MA. Restoring Compromised Cl - in D2 Neurons of a Huntington's Disease Mouse Model Rescues Motor Disability. J Neurosci 2024; 44:e0215242024. [PMID: 39500579 PMCID: PMC11638812 DOI: 10.1523/jneurosci.0215-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder with no cure, characterized by significant neurodegeneration of striatal GABAergic medium spiny neurons (MSNs). Early stages of the disease are characterized by the loss of dopamine 2 receptor-expressing MSNs (D2 MSNs) followed by degeneration of dopamine 1 receptor-expressing MSNs (D1 MSNs), leading to aberrant basal ganglia signaling. While the early degeneration of D2 MSNs and impaired GABAergic transmission are well-documented, potassium chloride cotransporter 2 (KCC2), a key regulator of intracellular chloride (Cl-), and therefore GABAergic signaling, has not been characterized in D1 and D2 MSNs in HD. We aimed to investigate whether Cl- regulation was differentially altered in D1 and D2 MSNs and may contribute to the early degeneration of D2 MSNs in male and female symptomatic R6/2 mice. We used electrophysiology to record the reversal potential for GABAA receptors (E GABA), a read-out for the efficacy of Cl- regulation, in striatal D1 and D2 MSNs and their corresponding output structures. During the early symptomatic phase (P55-P65), Cl- impairments were observed in D2 MSNs in R6/2 mice, with no change in D1 MSNs. Cl- regulation was also dysfunctional in the globus pallidus externa, resulting in GABA-mediated excitation. When we overexpressed KCC2 in D2 MSNs using AAV-mediated delivery, we delayed the onset of motor impairments in R6/2 mice. We demonstrate that Cl- homeostasis is differentially altered in D1 and D2 MSNs and may contribute to the enhanced susceptibility of D2 MSNs during HD progression.
Collapse
Affiliation(s)
- Melissa Serranilla
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
2
|
Raveendran VA, Serranilla M, Asgarihafshejani A, de Saint-Rome M, Cherednychenko M, Mullany S, Mitchell JA, Pressey JC, Woodin MA. SNARE protein SNAP25 regulates the chloride-transporter KCC2 in neurons. iScience 2024; 27:111156. [PMID: 39507243 PMCID: PMC11539599 DOI: 10.1016/j.isci.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Inhibitory synaptic neurotransmission mediated by GABA requires a low concentration of chloride ions (Cl-) in neurons, which is established and maintained by the potassium-chloride co-transporter 2 (KCC2). While KCC2-interacting proteins are known to regulate KCC2 protein level and function, specific KCC2-interacting partners are still being identified and characterized. We asked whether SNAP25, an integral component of the SNARE-complex and a novel KCC2 interactor, regulates KCC2 protein and function in mice. We demonstrated that SNAP25 interacts with KCC2, and that this interaction is regulated by protein kinase C (PKC)-mediated phosphorylation. We also discovered that SNAP25 knockdown decreases total KCC2 in cortical neurons, and reduces the strength of synaptic inhibition, as demonstrated through a depolarization of the reversal potential for GABA (EGABA), indicating reduced KCC2 function. Our biochemical and electrophysiological data combined demonstrate that SNAP25 regulates KCC2 membrane expression and function, and in doing so, regulates inhibitory synaptic transmission.
Collapse
Affiliation(s)
| | - Melissa Serranilla
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Azam Asgarihafshejani
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Mariia Cherednychenko
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Shanelle Mullany
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jennifer A. Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jessica C. Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Melanie A. Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
3
|
McMoneagle E, Zhou J, Zhang S, Huang W, Josiah SS, Ding K, Wang Y, Zhang J. Neuronal K +-Cl - cotransporter KCC2 as a promising drug target for epilepsy treatment. Acta Pharmacol Sin 2024; 45:1-22. [PMID: 37704745 PMCID: PMC10770335 DOI: 10.1038/s41401-023-01149-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023]
Abstract
Epilepsy is a prevalent neurological disorder characterized by unprovoked seizures. γ-Aminobutyric acid (GABA) serves as the primary fast inhibitory neurotransmitter in the brain, and GABA binding to the GABAA receptor (GABAAR) regulates Cl- and bicarbonate (HCO3-) influx or efflux through the channel pore, leading to GABAergic inhibition or excitation, respectively. The neuron-specific K+-Cl- cotransporter 2 (KCC2) is essential for maintaining a low intracellular Cl- concentration, ensuring GABAAR-mediated inhibition. Impaired KCC2 function results in GABAergic excitation associated with epileptic activity. Loss-of-function mutations and altered expression of KCC2 lead to elevated [Cl-]i and compromised synaptic inhibition, contributing to epilepsy pathogenesis in human patients. KCC2 antagonism studies demonstrate the necessity of limiting neuronal hyperexcitability within the brain, as reduced KCC2 functioning leads to seizure activity. Strategies focusing on direct (enhancing KCC2 activation) and indirect KCC2 modulation (altering KCC2 phosphorylation and transcription) have proven effective in attenuating seizure severity and exhibiting anti-convulsant properties. These findings highlight KCC2 as a promising therapeutic target for treating epilepsy. Recent advances in understanding KCC2 regulatory mechanisms, particularly via signaling pathways such as WNK, PKC, BDNF, and its receptor TrkB, have led to the discovery of novel small molecules that modulate KCC2. Inhibiting WNK kinase or utilizing newly discovered KCC2 agonists has demonstrated KCC2 activation and seizure attenuation in animal models. This review discusses the role of KCC2 in epilepsy and evaluates its potential as a drug target for epilepsy treatment by exploring various strategies to regulate KCC2 activity.
Collapse
Affiliation(s)
- Erin McMoneagle
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK
| | - Jin Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shiyao Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital Xiamen University, School of Medicine, Xiamen University, Xiang'an Nan Lu, Xiamen, 361102, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK.
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital Xiamen University, School of Medicine, Xiamen University, Xiang'an Nan Lu, Xiamen, 361102, China.
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
4
|
Tomita K, Kuwahara Y, Igarashi K, Kitanaka J, Kitanaka N, Takashi Y, Tanaka KI, Roudkenar MH, Roushandeh AM, Kurimasa A, Nishitani Y, Sato T. Therapeutic potential for KCC2-targeted neurological diseases. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:431-438. [PMID: 38022385 PMCID: PMC10665825 DOI: 10.1016/j.jdsr.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
Patients with neurological diseases, such as schizophrenia, tend to show low K+-Cl- co-transporter 2 (KCC2) levels in the brain. The cause of these diseases has been associated with stress and neuroinflammation. However, since the pathogenesis of these diseases is not yet fully investigated, drug therapy is still limited to symptomatic therapy. Targeting KCC2, which is mainly expressed in the brain, seems to be an appropriate approach in the treatment of these diseases. In this review, we aimed to discuss about stress and inflammation, KCC2 and Gamma-aminobutyric acid (GABA) function, diseases which decrease the KCC2 levels in the brain, factors that regulate KCC2 activity, and the possibility to overcome neuronal dysfunction targeting KCC2. We also aimed to discuss the relationships between neurological diseases and LPS caused by Porphyromonas gingivalis (P. g), which is a type of oral bacterium. Clinical trials on oxytocin, sirtuin 1 (SIRT1) activator, and transient receptor potential cation channel subfamily V Member 1 activator have been conducted to develop effective treatment methods. We believe that KCC2 modulators that regulate mitochondria, such as oxytocin, glycogen synthase kinase 3β (GSK3β), and SIRT1, can be potential targets for neurological diseases.
Collapse
Affiliation(s)
- Kazuo Tomita
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890–8544, Japan
- Division of Pharmacology, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Hyogo 650–8530, Japan
| | - Yoshikazu Kuwahara
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890–8544, Japan
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Miyagi, 983-8536, Japan
| | - Kento Igarashi
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890–8544, Japan
- Division of Pharmacology, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Hyogo 650–8530, Japan
| | - Junichi Kitanaka
- Laboratory of Drug Addiction and Experimental Therapeutics, Schoolof Pharmacy, Hyogo Medical University, Hyogo 650-8530, Japan
| | - Nobue Kitanaka
- Laboratory of Drug Addiction and Experimental Therapeutics, Schoolof Pharmacy, Hyogo Medical University, Hyogo 650-8530, Japan
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Hyogo 663-8501, Japan
| | - Yuko Takashi
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890–8544, Japan
| | - Koh-ichi Tanaka
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890–8544, Japan
- Division of Pharmacology, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Hyogo 650–8530, Japan
| | - Mehryar Habibi Roudkenar
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890–8544, Japan
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht 41937–13194, Iran
| | - Amaneh Mohammadi Roushandeh
- Department of Anatomy, School of Biomedical Sciences, Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Akihiro Kurimasa
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Miyagi, 983-8536, Japan
| | - Yoshihiro Nishitani
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890–8544, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890–8544, Japan
| |
Collapse
|
5
|
Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.
Collapse
Affiliation(s)
- Santosh R D’Mello
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71104, USA
| |
Collapse
|
6
|
Fogarty MJ. Inhibitory Synaptic Influences on Developmental Motor Disorders. Int J Mol Sci 2023; 24:ijms24086962. [PMID: 37108127 PMCID: PMC10138861 DOI: 10.3390/ijms24086962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During development, GABA and glycine play major trophic and synaptic roles in the establishment of the neuromotor system. In this review, we summarise the formation, function and maturation of GABAergic and glycinergic synapses within neuromotor circuits during development. We take special care to discuss the differences in limb and respiratory neuromotor control. We then investigate the influences that GABAergic and glycinergic neurotransmission has on two major developmental neuromotor disorders: Rett syndrome and spastic cerebral palsy. We present these two syndromes in order to contrast the approaches to disease mechanism and therapy. While both conditions have motor dysfunctions at their core, one condition Rett syndrome, despite having myriad symptoms, has scientists focused on the breathing abnormalities and their alleviation-to great clinical advances. By contrast, cerebral palsy remains a scientific quagmire or poor definitions, no widely adopted model and a lack of therapeutic focus. We conclude that the sheer abundance of diversity of inhibitory neurotransmitter targets should provide hope for intractable conditions, particularly those that exhibit broad spectra of dysfunction-such as spastic cerebral palsy and Rett syndrome.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
7
|
Yin Z, Yin J, Huo Y, Gu G, Yu J, Li A, Tang J. KCC2 overexpressed exosomes meditated spinal cord injury recovery in mice. Biomed Mater 2022; 17. [PMID: 36263707 DOI: 10.1088/1748-605x/ac956b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Exosomes show great potential in treating diseases of the central nervous system including spinal cord injury (SCI), still better engineered exosomes have more advantages. In this study, we purified exosomes from K+-Cl-co-transporter (KCC2) overexpressed bone marrow mesenchymal stem cells (ExoKCC2), to investigate the effect of ExoKCC2on neural differentiationin vitroand the repairing function of ExoKCC2in SCI micein vivo. Compared to bone marrow mesenchymal stem cells (BMSC)-derived exosomes (Exo), ExoKCC2could better promote neural stem cell differentiated into neurons, ameliorate the function recovery of SCI mice, and accelerate the neural regeneration at the lesion site. Altogether, engineered ExoKCC2may prove to be an advantageous strategy for SCI treatment.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Yongfeng Huo
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Guangxue Gu
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Jian Yu
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Aimin Li
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Jinhai Tang
- The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|