1
|
Kharisova CB, Kitaeva KV, Solovyeva VV, Sufianov AA, Sufianova GZ, Akhmetshin RF, Bulgar SN, Rizvanov AA. Looking to the Future of Viral Vectors in Ocular Gene Therapy: Clinical Review. Biomedicines 2025; 13:365. [PMID: 40002778 PMCID: PMC11852528 DOI: 10.3390/biomedicines13020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Eye diseases can significantly affect the quality of life of patients due to decreased visual acuity. Although modern ophthalmological diagnostic methods exist, some diseases of the visual system are asymptomatic in the early stages. Most patients seek advice from an ophthalmologist as a result of rapidly progressive manifestation of symptoms. A number of inherited and acquired eye diseases have only supportive treatment without eliminating the etiologic factor. A promising solution to this problem may be gene therapy, which has proven efficacy and safety shown in a number of clinical studies. By directly altering or replacing defective genes, this therapeutic approach will stop as well as reverse the progression of eye diseases. This review examines the concept of gene therapy and its application in the field of ocular pathologies, emphasizing the most recent scientific advances and their potential impacts on visual function status.
Collapse
Affiliation(s)
- Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, 119991 Moscow, Russia;
- Federal State-Financed Institution “Federal Centre of Neurosurgery”, Ministry of Health of the Russian Federation, 625032 Tyumen, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Rustem F. Akhmetshin
- The Department of Ophthalmology, Kazan State Medical University, 420012 Kazan, Russia;
| | - Sofia N. Bulgar
- Kazan State Medical Academy—Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare of the Russian Federation, 420012 Kazan, Russia;
- Republican Clinical Ophthalmological Hospital of the Ministry of Health of the Republic of Tatarstan, 420012 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
2
|
Feng L, Wang C, Zhang C, Zhang W, Song W. Role of epigenetic regulation in glaucoma. Biomed Pharmacother 2023; 168:115633. [PMID: 37806089 DOI: 10.1016/j.biopha.2023.115633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Glaucoma is the world's leading irreversible blinding eye disease. Lowering intraocular pressure is currently the only effective clinical treatment. However, there is a lack of long-acting IOP-lowering drugs, and some patients still experience retinal ganglion cell loss even with good intraocular pressure control. Currently, there is no effective method for neuroprotection and regeneration in clinical practice for glaucoma. In recent years, epigenetics has been widely researched and reported for its role in glaucoma's neuroprotection and regeneration. This article reviews the changes in histone modifications, DNA methylation, non-coding RNA, and m6A methylation in glaucoma, aiming to provide new perspectives for glaucoma management, protection of retinal ganglion cells, and axon regeneration by understanding epigenetic alterations.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China.
| |
Collapse
|
3
|
Shafiq M, Rafique M, Cui Y, Pan L, Do CW, Ho EA. An insight on ophthalmic drug delivery systems: Focus on polymeric biomaterials-based carriers. J Control Release 2023; 362:446-467. [PMID: 37640109 DOI: 10.1016/j.jconrel.2023.08.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Presently, different types of eye diseases, such as glaucoma, myopia, infection, and dry eyes are treated with topical eye drops. However, due to ocular surface barriers, eye drops require multiple administrations, which may cause several risks, thereby necessitating additional strategies. Some of the key characteristics of an ideal ocular drug delivery system are as follows: (a) good penetration into cornea, (b) high drug retention in the ocular tissues, (c) targetability to the desired regions of the eye, and (d) good bioavailability. It is worthy to note that the corneal epithelial tight junctions hinder the permeation of therapeutics through the cornea. Therefore, it is necessary to design nanocarriers that can overcome these barriers and enhance drug penetration into the inner parts of the eye. Moreover, intelligent multifunctional nanocarriers can be designed to include cavities, which may help encapsulate sufficient amount of the drug. In addition, nanocarriers can be modified with the targeting moieties. Different types of nanocarriers have been developed for ocular drug delivery applications, including emulsions, liposomes, micelles, and nanoparticles. However, these formulations may be rapidly cleared from the eye. The therapeutic use of the nanoparticles (NPs) is also hindered by the non-specific adsorption of proteins on NPs, which may limit their interaction with the cellular moieties or other targeted biological factors. Functional drug delivery systems (DDS), which can offer targeted ocular drug delivery while avoiding the non-specific protein adsorption could exhibit great potential. This could be further realized by the on-demand DDS, which can respond to the stimuli in a spatio-temporal fashion. The cell-mediated DDS offer another valuable platform for ophthalmological drug delivery.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yingkun Cui
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Li Pan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute of Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Emmanuel A Ho
- School of Pharmacy, University of Waterloo, Waterloo, Canada; Waterloo Institute for Nanotechnology, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong.
| |
Collapse
|
4
|
Abla KK, Mehanna MM. Lipid-based nanocarriers challenging the ocular biological barriers: Current paradigm and future perspectives. J Control Release 2023; 362:70-96. [PMID: 37591463 DOI: 10.1016/j.jconrel.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Eye is the most specialized and sensory body organ and treating eye diseases efficiently is necessary. Despite various attempts, the design of a consummate ophthalmic drug delivery system remains unsolved because of anatomical and physiological barriers that hinder drug transport into the desired ocular tissues. It is important to advance new platforms to manage ocular disorders, whether they exist in the anterior or posterior cavities. Nanotechnology has piqued the interest of formulation scientists because of its capability to augment ocular bioavailability, control drug release, and minimize inefficacious drug absorption, with special attention to lipid-based nanocarriers (LBNs) because of their cellular safety profiles. LBNs have greatly improved medication availability at the targeted ocular site in the required concentration while causing minimal adverse effects on the eye tissues. Nevertheless, the exact mechanisms by which lipid-based nanocarriers can bypass different ocular barriers are still unclear and have not been discussed. Thus, to bridge this gap, the current work aims to highlight the applications of LBNs in the ocular drug delivery exploring the different ocular barriers and the mechanisms viz. adhesion, fusion, endocytosis, and lipid exchange, through which these platforms can overcome the barrier characteristics challenges.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
5
|
Wu KY, Tan K, Akbar D, Choulakian MY, Tran SD. A New Era in Ocular Therapeutics: Advanced Drug Delivery Systems for Uveitis and Neuro-Ophthalmologic Conditions. Pharmaceutics 2023; 15:1952. [PMID: 37514137 PMCID: PMC10385446 DOI: 10.3390/pharmaceutics15071952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The eye's intricate anatomical barriers pose significant challenges to the penetration, residence time, and bioavailability of topically applied medications, particularly in managing uveitis and neuro-ophthalmologic conditions. Addressing this issue, polymeric nano-based drug delivery systems (DDS) have surfaced as a promising solution. These systems enhance drug bioavailability in hard-to-reach target tissues, extend residence time within ocular tissues, and utilize biodegradable and nanosized polymers to reduce undesirable side effects. Thus, they have stimulated substantial interest in crafting innovative treatments for uveitis and neuro-ophthalmologic diseases. This review provides a comprehensive exploration of polymeric nano-based DDS used for managing these conditions. We discuss the present therapeutic hurdles posed by these diseases and explore the potential role of various biopolymers in broadening our treatment repertoire. Our study incorporates a detailed literature review of preclinical and clinical studies from 2017 to 2023. Owing to advancements in polymer science, ocular DDS has made rapid strides, showing tremendous potential to revolutionize the treatment of patients with uveitis and neuro-ophthalmologic disorders.
Collapse
Affiliation(s)
- Kevin Y Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Kenneth Tan
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1J4, Canada
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Mazen Y Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
6
|
Wang J, Feng S, Zhang Q, Qin H, Xu C, Fu X, Yan L, Zhao Y, Yao K. Roles of Histone Acetyltransferases and Deacetylases in the Retinal Development and Diseases. Mol Neurobiol 2023; 60:2330-2354. [PMID: 36637745 DOI: 10.1007/s12035-023-03213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
The critical role of epigenetic modification of histones in maintaining the normal function of the nervous system has attracted increasing attention. Among these modifications, the level of histone acetylation, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is essential in regulating gene expression. In recent years, the research progress on the function of HDACs in retinal development and disease has advanced remarkably, while that regarding HATs remains to be investigated. Here, we overview the roles of HATs and HDACs in regulating the development of diverse retinal cells, including retinal progenitor cells, photoreceptor cells, bipolar cells, ganglion cells, and Müller glial cells. The effects of HATs and HDACs on the progression of various retinal diseases are also discussed with the highlight of the proof-of-concept research regarding the application of available HDAC inhibitors in treating retinal diseases.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shuyu Feng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qian Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China. .,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China. .,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
7
|
Wu KY, Joly-Chevrier M, Akbar D, Tran SD. Overcoming Treatment Challenges in Posterior Segment Diseases with Biodegradable Nano-Based Drug Delivery Systems. Pharmaceutics 2023; 15:1094. [PMID: 37111579 PMCID: PMC10142934 DOI: 10.3390/pharmaceutics15041094] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Posterior segment eye diseases present a challenge in treatment due to the complex structures in the eye that serve as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of topical and intraocular medications. This hinders effective treatment and requires frequent dosing, such as the regular use of eye drops or visits to the ophthalmologist for intravitreal injections, to manage the disease. Moreover, the drugs must be biodegradable to minimize toxicity and adverse reactions, as well as small enough to not affect the visual axis. The development of biodegradable nano-based drug delivery systems (DDSs) can be the solution to these challenges. First, they can stay in ocular tissues for longer periods of time, reducing the frequency of drug administration. Second, they can pass through ocular barriers, offering higher bioavailability to targeted tissues that are otherwise inaccessible. Third, they can be made up of polymers that are biodegradable and nanosized. Hence, therapeutic innovations in biodegradable nanosized DDS have been widely explored for ophthalmic drug delivery applications. In this review, we will present a concise overview of DDSs utilized in the treatment of ocular diseases. We will then examine the current therapeutic challenges faced in the management of posterior segment diseases and explore how various types of biodegradable nanocarriers can enhance our therapeutic arsenal. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 was conducted. Through the advances in biodegradable materials, combined with a better understanding of ocular pharmacology, the nano-based DDSs have rapidly evolved, showing great promise to overcome challenges currently encountered by clinicians.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | | | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
8
|
Patel C, Pande S, Sagathia V, Ranch K, Beladiya J, Boddu SHS, Jacob S, Al-Tabakha MM, Hassan N, Shahwan M. Nanocarriers for the Delivery of Neuroprotective Agents in the Treatment of Ocular Neurodegenerative Diseases. Pharmaceutics 2023; 15:837. [PMID: 36986699 PMCID: PMC10052766 DOI: 10.3390/pharmaceutics15030837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Retinal neurodegeneration is considered an early event in the pathogenesis of several ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and glaucoma. At present, there is no definitive treatment to prevent the progression or reversal of vision loss caused by photoreceptor degeneration and the death of retinal ganglion cells. Neuroprotective approaches are being developed to increase the life expectancy of neurons by maintaining their shape/function and thus prevent the loss of vision and blindness. A successful neuroprotective approach could prolong patients' vision functioning and quality of life. Conventional pharmaceutical technologies have been investigated for delivering ocular medications; however, the distinctive structural characteristics of the eye and the physiological ocular barriers restrict the efficient delivery of drugs. Recent developments in bio-adhesive in situ gelling systems and nanotechnology-based targeted/sustained drug delivery systems are receiving a lot of attention. This review summarizes the putative mechanism, pharmacokinetics, and mode of administration of neuroprotective drugs used to treat ocular disorders. Additionally, this review focuses on cutting-edge nanocarriers that demonstrated promising results in treating ocular neurodegenerative diseases.
Collapse
Affiliation(s)
- Chirag Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Sonal Pande
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Vrunda Sagathia
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Ketan Ranch
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Jayesh Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| | - Moawia M. Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Nageeb Hassan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
9
|
Xu K, Yu L, Wang Z, Lin P, Zhang N, Xing Y, Yang N. Use of gene therapy for optic nerve protection: Current concepts. Front Neurosci 2023; 17:1158030. [PMID: 37090805 PMCID: PMC10117674 DOI: 10.3389/fnins.2023.1158030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Gene therapy has become an essential treatment for optic nerve injury (ONI) in recent years, and great strides have been made using animal models. ONI, which is characterized by the loss of retinal ganglion cells (RGCs) and axons, can induce abnormalities in the pupil light reflex, visual field defects, and even vision loss. The eye is a natural organ to target with gene therapy because of its high accessibility and certain immune privilege. As such, numerous gene therapy trials are underway for treating eye diseases such as glaucoma. The aim of this review was to cover research progress made in gene therapy for ONI. Specifically, we focus on the potential of gene therapy to prevent the progression of neurodegenerative diseases and protect both RGCs and axons. We cover the basic information of gene therapy, including the classification of gene therapy, especially focusing on genome editing therapy, and then we introduce common editing tools and vector tools such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) -Cas9 and adeno-associated virus (AAV). We also summarize the progress made on understanding the roles of brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), phosphatase-tensin homolog (PTEN), suppressor of cytokine signal transduction 3 (SOCS3), histone acetyltransferases (HATs), and other important molecules in optic nerve protection. However, gene therapy still has many challenges, such as misalignment and mutations, immunogenicity of AAV, time it takes and economic cost involved, which means that these issues need to be addressed before clinical trials can be considered.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Yu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiyi Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Yiqiao Xing,
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Ning Yang,
| |
Collapse
|