1
|
Malcangi G, Inchingolo AM, Inchingolo AD, Ferrante L, Latini G, Trilli I, Nardelli P, Longo M, Palermo A, Inchingolo F, Dipalma G. The Role of Platelet Concentrates and Growth Factors in Facial Rejuvenation: A Systematic Review with Case Series. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:84. [PMID: 39859067 PMCID: PMC11767021 DOI: 10.3390/medicina61010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Background and objectives: Due to the regeneration potential of growth factors (GFs) and platelet concentrates (PCs), facial rejuvenation has been a major area of attention in esthetic medicine. The effectiveness and safety of PCs and GFs in promoting face rejuvenation are examined in this systematic review, which is complemented by a case series. GFs are essential for collagen production and dermal matrix remodeling, while PCs, like Platelet-Rich Plasma (PRP), are abundant in bioactive chemicals that promote tissue healing and cellular regeneration. Materials and Methods: A comprehensive literature search was performed on PubMed, Web of Science, and Scopus, focusing on human clinical trials published between February 2019 and February 2024 related to PRP and facial esthetics. Results: Thirteen studies met the inclusion criteria and were analyzed. Conclusions: The review summarizes the most recent data on patient outcomes, treatment regimens, and possible hazards. The case series that goes with it shows real-world examples of how to improve skin elasticity, texture, and general facial appearance with little negative side effects. These results highlight the potential use of PCs and GFs as minimally invasive procedures.
Collapse
Affiliation(s)
- Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.M.); (A.D.I.); (L.F.); (G.L.); (I.T.); (P.N.); (M.L.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.M.); (A.D.I.); (L.F.); (G.L.); (I.T.); (P.N.); (M.L.); (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.M.); (A.D.I.); (L.F.); (G.L.); (I.T.); (P.N.); (M.L.); (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.M.); (A.D.I.); (L.F.); (G.L.); (I.T.); (P.N.); (M.L.); (G.D.)
| | - Giulia Latini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.M.); (A.D.I.); (L.F.); (G.L.); (I.T.); (P.N.); (M.L.); (G.D.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.M.); (A.D.I.); (L.F.); (G.L.); (I.T.); (P.N.); (M.L.); (G.D.)
| | - Paola Nardelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.M.); (A.D.I.); (L.F.); (G.L.); (I.T.); (P.N.); (M.L.); (G.D.)
| | - Marialuisa Longo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.M.); (A.D.I.); (L.F.); (G.L.); (I.T.); (P.N.); (M.L.); (G.D.)
| | - Andrea Palermo
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.M.); (A.D.I.); (L.F.); (G.L.); (I.T.); (P.N.); (M.L.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.M.); (A.D.I.); (L.F.); (G.L.); (I.T.); (P.N.); (M.L.); (G.D.)
| |
Collapse
|
2
|
Inchingolo F, Inchingolo AM, Latini G, de Ruvo E, Campanelli M, Palermo A, Fabbro MD, Blasio MD, Inchingolo AD, Dipalma G. Guided Bone Regeneration: CGF and PRF Combined With Various Types of Scaffolds-A Systematic Review. Int J Dent 2024; 2024:4990295. [PMID: 39669891 PMCID: PMC11637628 DOI: 10.1155/ijod/4990295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Objective: Bone regeneration plays a pivotal role in modern oral surgery, particularly in facilitating successful implant-prosthetic rehabilitation. This systematic review explores the regenerative potential of growth factors, such as platelet-rich fibrin (PRF) and concentrated growth factors (CGFs), when combined with various types of scaffolds in bone augmentation procedures, including guided bone regeneration, split crest, sinus lift (SL), and alveolar ridge preservation. Method: A comprehensive search strategy yielded 18 relevant studies, which were analyzed for bone formation and stabilization outcomes. Results: Results indicate that PRF enhances bone regeneration and stabilization in SL and ridge augmentation procedures, while CGFs facilitate surgical techniques and augment bone. However, some studies did not report significant differences. Growth factors also demonstrate benefits in wound healing, reducing bone resorption, and enhancing socket preservation. Conclusion: Despite valuable insights, further research is needed to comprehensively understand the characteristics of growth factors in various surgical interventions, ensuring informed decision-making in bone regeneration surgery.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Interdisciplinary Department of Medicine, Università degli Studi di Bari Aldo Moro, Bari 70124, Italy
| | - Angelo Michele Inchingolo
- Interdisciplinary Department of Medicine, Università degli Studi di Bari Aldo Moro, Bari 70124, Italy
| | - Giulia Latini
- Interdisciplinary Department of Medicine, Università degli Studi di Bari Aldo Moro, Bari 70124, Italy
| | - Elisabetta de Ruvo
- Interdisciplinary Department of Medicine, Università degli Studi di Bari Aldo Moro, Bari 70124, Italy
| | - Merigrazia Campanelli
- Interdisciplinary Department of Medicine, Università degli Studi di Bari Aldo Moro, Bari 70124, Italy
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK
| | - Massimo Del Fabbro
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Marco Di Blasio
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Alessio Danilo Inchingolo
- Interdisciplinary Department of Medicine, Università degli Studi di Bari Aldo Moro, Bari 70124, Italy
| | - Gianna Dipalma
- Interdisciplinary Department of Medicine, Università degli Studi di Bari Aldo Moro, Bari 70124, Italy
| |
Collapse
|
3
|
Wang Z, Lv H, Du H, Liu S, Huang L, Pan Z, Xie W, Yang M, Chen S, Liu L, Pan H, Li D, Sun H. Dual scalable osteogenic microtissue engineering via GelMA microsphere-inspired mechanical training and autonomous assembling of dental pulp stem cell. Int J Biol Macromol 2024; 282:136258. [PMID: 39395512 DOI: 10.1016/j.ijbiomac.2024.136258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Large bone tissue defects present a significant clinical challenge due to the lack of stem cells and an osteogenic microenvironment, leading to fibrotic healing and impaired bone regeneration. Microsphere-based cell-on three-dimensional (3D) culture systems show great promise for constructing osteogenic microtissues. However, the underlying mechanisms require further investigation. In this study, we propose a simple, scalable framework for highly efficient osteogenic microtissue construction, utilizing gelatin methacryloyl (GelMA) microspheres and dental pulp stem cells (DPSCs). The GelMA microspheres provide an extensive, scalable 3D framework for the autonomous adhesion, migration, and proliferation of DPSCs. Within the enormous 3D space created by the microspheres, DPSCs anchor to the microspheres and neighboring cells, inducing intrinsic tensile stress and simulating a mechanical force akin to "rock climbing training". Transcriptomic sequencing results reveal that the 3D spatial and mechanical microenvironment modulates biological processes involved in cell adhesion, extracellular matrix organization, and the positive regulation of cell migration. Further investigations demonstrate that triggering the FAK/YAP pathway mediate mechanical driven differentiation of DPSCs into the osteoblastic lineage in the excellent osteogenic microtissues. Moreover, this simple scalable 3D framework strategy is expected to enable the efficient and large-scale preparation of stem cell-based microtissues.
Collapse
Affiliation(s)
- Zhuoran Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, China
| | - Hanze Du
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Centre, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Shuchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, China
| | - Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, China
| | - Ziyi Pan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, China
| | - Wangni Xie
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, China
| | - Mingxi Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, China; Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130031, China
| | - Shi Chen
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Centre, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Lijun Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, China.
| | - Hui Pan
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Centre, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, China.
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, China
| |
Collapse
|
4
|
Soylu E, Kilavuz MS, Duman F, Ekeer H, Gönen ZB, Kahraman B, Yay AH, Bolat D. Fish: a new xenograft source for maxillary sinus lifting. J Appl Oral Sci 2024; 32:e20240245. [PMID: 39607250 PMCID: PMC11643101 DOI: 10.1590/1678-7757-2024-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/28/2024] [Accepted: 09/24/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVE Although autogenous grafting is accepted as the gold standard in intraoral grafting, xenogenous grafts are frequently used in sinus lift surgeries due to their osteoinductive and osteoconductive properties. This study aimed to investigate the efficacy of fish spine-derived xenogenic grafts in sinus augmentation surgery. MATERIAL AND METHODS In this study, a fish spine-derived xenogenic graft was produced for comparison with autogenous graft and bovine derived xenogenic grafts. Twenty-one New Zealand rabbits were used. Autogenous grafts (AG- Group 1), as well as bovine-derived (bHAP - Group 2) and fish spine-derived (fHAP - Group 3) xenogenic grafts were placed in the right and left sinuses of rabbits. The animals were sacrificed at the 4th and 8th weeks. New bone formation (NBF) was evaluated through histological examination, while bone volume (BV), new bone surface/bone volume (BS-BV), new bone surface/tissue volume (BS-TV), and trabecular separation (Tb-Sp) were assessed via Micro-CT. Statistical significance was considered at p<0.05. RESULTS Histological examination revealed a significant difference in NBF between AG-bHAP (p<0.001), as well as between fHAP-bHAP (p<0.001) in the fourth-week group. No significant difference was found in the eighth-week group (p=0.130). In the eighth-week group, a statistically significant difference was found between fHAP and bHAP in terms of BV. (p=0.007). CONCLUSION Although both graft materials used in this study showed positive effects on bone regeneration, fHAP and AG presented similar effects on bone regeneration and were superior to bHAP.
Collapse
Affiliation(s)
- Emrah Soylu
- Erciyes University Faculty of DentistryDepartment of Oral and Maxillofacial Surgery and DentBioChem Biotechnology Co.KayseriTürkiyeErciyes University Faculty of Dentistry, Department of Oral and Maxillofacial Surgery and DentBioChem Biotechnology Co., Erciyes Teknopark, Kayseri, Türkiye.
| | - Musab Süleyman Kilavuz
- Erciyes University Faculty of DentistryDepartment of Oral and Maxillofacial Surgery and DentBioChem Biotechnology Co.KayseriTürkiyeErciyes University Faculty of Dentistry, Department of Oral and Maxillofacial Surgery and DentBioChem Biotechnology Co., Erciyes Teknopark, Kayseri, Türkiye.
| | - Fatih Duman
- Erciyes UniversityFaculty of ScienceDepartment of HydrobiologyKayseriTürkiyeErciyes University, Faculty of Science, Department of Hydrobiology, Kayseri, Türkiye
| | - Hasan Ekeer
- Erciyes UniversityFaculty of DentistryResearch LaboratoryKayseriTürkiyeBiologist, Erciyes University, Faculty of Dentistry, Research Laboratory, Kayseri, Türkiye
| | - Zeynep Burçin Gönen
- Erciyes University Faculty of DentistryDepartment of Oral and Maxillofacial Surgery and DentBioChem Biotechnology Co.KayseriTürkiyeErciyes University Faculty of Dentistry, Department of Oral and Maxillofacial Surgery and DentBioChem Biotechnology Co., Erciyes Teknopark, Kayseri, Türkiye.
| | - Beyza Kahraman
- Erciyes University Faculty of DentistryDepartment of Oral and Maxillofacial Surgery and DentBioChem Biotechnology Co.KayseriTürkiyeErciyes University Faculty of Dentistry, Department of Oral and Maxillofacial Surgery and DentBioChem Biotechnology Co., Erciyes Teknopark, Kayseri, Türkiye.
| | - Arzu Hanım Yay
- Erciyes UniversityFaculty of MedicineDepartment of Histology and EmbryologyKayseriTürkiyeErciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Türkiye
| | - Demet Bolat
- Erciyes UniversityFaculty of MedicineDepartment of Histology and EmbryologyKayseriTürkiyeErciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Türkiye
| |
Collapse
|
5
|
Chen L, Wang X, Tian S, Zhou L, Wang L, Liu X, Yang Z, Fu G, Liu X, Ding C, Zou D. Integrin-linked kinase control dental pulp stem cell senescence via the mTOR signaling pathway. Stem Cells 2024; 42:861-873. [PMID: 39169713 PMCID: PMC11464141 DOI: 10.1093/stmcls/sxae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/25/2024] [Indexed: 08/23/2024]
Abstract
Human dental pulp stem cells (HDPSCs) showed an age-dependent decline in proliferation and differentiation capacity. Decline in proliferation and differentiation capacity affects the dental stromal tissue homeostasis and impairs the regenerative capability of HDPSCs. However, which age-correlated proteins regulate the senescence of HDPSCs remain unknown. Our study investigated the proteomic characteristics of HDPSCs isolated from subjects of different ages and explored the molecular mechanism of age-related changes in HDPSCs. Our study showed that the proliferation and osteogenic differentiation of HDPSCs were decreased, while the expression of aging-related genes (p21, p53) and proportion of senescence-associated β-galactosidase (SA-β-gal)-positive cells were increased with aging. The bioinformatic analysis identified that significant proteins positively correlated with age were enriched in response to the mammalian target of rapamycin (mTOR) signaling pathway (ILK, MAPK3, mTOR, STAT1, and STAT3). We demonstrated that OSU-T315, an inhibitor of integrin-linked kinase (ILK), rejuvenated aged HDPSCs, similar to rapamycin (an inhibitor of mTOR). Treatment with OSU-T315 decreased the expression of aging-related genes (p21, p53) and proportion of SA-β-gal-positive cells in HDPSCs isolated from old (O-HDPSCs). Additionally, OSU-T315 promoted the osteoblastic differentiation capacity of O-HDPSCs in vitro and bone regeneration of O-HDPSCs in rat calvarial bone defects model. Our study indicated that the proliferation and osteoblastic differentiation of HDPSCs were impaired with aging. Notably, the ILK/AKT/mTOR/STAT1 signaling pathway may be a major factor in the regulation of HDPSC senescence, which help to provide interventions for HDPSC senescence.
Collapse
Affiliation(s)
- Lu Chen
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, People’s Republic of China
| | - Xiping Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People’s Republic of China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, People’s Republic of China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Li Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People’s Republic of China
| | - Xiaohan Liu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, People’s Republic of China
| | - Zihan Yang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People’s Republic of China
| | - Guiqiang Fu
- Stomatology Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, People’s Republic of China
| | - Xingguang Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, People’s Republic of China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, People’s Republic of China
| | - Duohong Zou
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, People’s Republic of China
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People’s Republic of China
| |
Collapse
|
6
|
Wang X, Chen Q, Li J, Tian W, Liu Z, Chen T. Recent adavances of functional modules for tooth regeneration. J Mater Chem B 2024; 12:7497-7518. [PMID: 39021127 DOI: 10.1039/d4tb01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Dental diseases, such as dental caries and periodontal disorders, constitute a major global health challenge, affecting millions worldwide and often resulting in tooth loss. Traditional dental treatments, though beneficial, typically cannot fully restore the natural functions and structures of teeth. This limitation has prompted growing interest in innovative strategies for tooth regeneration methods. Among these, the use of dental stem cells to generate functional tooth modules represents an emerging and promising approach in dental tissue engineering. These modules aim to closely replicate the intricate morphology and essential physiological functions of dental tissues. Recent advancements in regenerative research have not only enhanced the assembly techniques for these modules but also highlighted their therapeutic potential in addressing various dental diseases. In this review, we discuss the latest progress in the construction of functional tooth modules, especially on regenerating dental pulp, periodontal tissue, and tooth roots.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jiayi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
7
|
Yang J, Shuai J, Siow L, Lu J, Sun M, An W, Yu M, Wang B, Chen Q. MicroRNA-146a-loaded magnesium silicate nanospheres promote bone regeneration in an inflammatory microenvironment. Bone Res 2024; 12:2. [PMID: 38221522 PMCID: PMC10788347 DOI: 10.1038/s41413-023-00299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 01/16/2024] Open
Abstract
Reconstruction of irregular oral-maxillofacial bone defects with an inflammatory microenvironment remains a challenge, as chronic local inflammation can largely impair bone healing. Here, we used magnesium silicate nanospheres (MSNs) to load microRNA-146a-5p (miR-146a) to fabricate a nanobiomaterial, MSN+miR-146a, which showed synergistic promoting effects on the osteogenic differentiation of human dental pulp stem cells (hDPSCs). In addition, miR-146a exhibited an anti-inflammatory effect on mouse bone marrow-derived macrophages (BMMs) under lipopolysaccharide (LPS) stimulation by inhibiting the NF-κB pathway via targeting tumor necrosis factor receptor-associated factor 6 (TRAF6), and MSNs could simultaneously promote M2 polarization of BMMs. MiR-146a was also found to inhibit osteoclast formation. Finally, the dual osteogenic-promoting and immunoregulatory effects of MSN+miR-146a were further validated in a stimulated infected mouse mandibular bone defect model via delivery by a photocuring hydrogel. Collectively, the MSN+miR-146a complex revealed good potential in treating inflammatory irregular oral-maxillofacial bone defects.
Collapse
Affiliation(s)
- Jiakang Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Jing Shuai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Lixuen Siow
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Jingyi Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Miao Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Wenyue An
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Baixiang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
8
|
Daneshian Y, Lewallen EA, Badreldin AA, Dietz AB, Stein GS, Cool SM, Ryoo HM, Cho YD, van Wijnen AJ. Fundamentals and Translational Applications of Stem Cells and Biomaterials in Dental, Oral and Craniofacial Regenerative Medicine. Crit Rev Eukaryot Gene Expr 2024; 34:37-60. [PMID: 38912962 DOI: 10.1615/critreveukaryotgeneexpr.2024053036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Regenerative dental medicine continuously expands to improve treatments for prevalent clinical problems in dental and oral medicine. Stem cell based translational opportunities include regenerative therapies for tooth restoration, root canal therapy, and inflammatory processes (e.g., periodontitis). The potential of regenerative approaches relies on the biological properties of dental stem cells. These and other multipotent somatic mesenchymal stem cell (MSC) types can in principle be applied as either autologous or allogeneic sources in dental procedures. Dental stem cells have distinct developmental origins and biological markers that determine their translational utility. Dental regenerative medicine is supported by mechanistic knowledge of the molecular pathways that regulate dental stem cell growth and differentiation. Cell fate determination and lineage progression of dental stem cells is regulated by multiple cell signaling pathways (e.g., WNTs, BMPs) and epigenetic mechanisms, including DNA modifications, histone modifications, and non-coding RNAs (e.g., miRNAs and lncRNAs). This review also considers a broad range of novel approaches in which stem cells are applied in combination with biopolymers, ceramics, and composite materials, as well as small molecules (agonistic or anti-agonistic ligands) and natural compounds. Materials that mimic the microenvironment of the stem cell niche are also presented. Promising concepts in bone and dental tissue engineering continue to drive innovation in dental and non-dental restorative procedures.
Collapse
Affiliation(s)
- Yasaman Daneshian
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Eric A Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | - Amr A Badreldin
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT 05405; University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Simon M Cool
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Hyun-Mo Ryoo
- School of Dentistry, Seoul National University, 28 Yeonkun-dong, Chongro-gu Seoul, 110-749, Republic of Korea
| | - Young Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, 101 Daehak‑no, Jongno‑gu, Seoul 03080, Republic of Korea
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
9
|
Bar JK, Lis-Nawara A, Kowalczyk T, Grelewski PG, Stamnitz S, Gerber H, Klimczak A. Osteogenic Potential of Human Dental Pulp Stem Cells (hDPSCs) Growing on Poly L-Lactide-Co-Caprolactone and Hyaluronic Acid (HYAFF-11 TM) Scaffolds. Int J Mol Sci 2023; 24:16747. [PMID: 38069071 PMCID: PMC10705868 DOI: 10.3390/ijms242316747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Bone tissue engineering using different scaffolds is a new therapeutic approach in regenerative medicine. This study explored the osteogenic potential of human dental pulp stem cells (hDPSCs) grown on a hydrolytically modified poly(L-lactide-co-caprolactone) (PLCL) electrospun scaffold and a non-woven hyaluronic acid (HYAFF-11™) mesh. The adhesion, immunophenotype, and osteogenic differentiation of hDPSCs seeded on PLCL and HYAFF-11™ scaffolds were analyzed. The results showed that PLCL and HYAFF-11™ scaffolds significantly supported hDPSCs adhesion; however, hDPSCs' adhesion rate was significantly higher on PLCL than on HYAFF-11™. SEM analysis confirmed good adhesion of hDPSCs on both scaffolds before and after osteogenesis. Alizarin red S staining showed mineral deposits on both scaffolds after hDPSCs osteogenesis. The mRNA levels of runt-related transcription factor 2 (Runx2), collagen type I (Coll-I), osterix (Osx), osteocalcin (Ocn), osteopontin (Opn), bone sialoprotein (Bsp), and dentin sialophosphoprotein (Dspp) gene expression and their proteins were higher in hDPSCs after osteogenic differentiation on both scaffolds compared to undifferentiated hDPSCs on PLCL and HYAFF-11™. These results showed that PLCL scaffolds provide a better environment that supports hDPSCs attachment and osteogenic differentiation than HYAFF-11™. The high mRNA of early osteogenic gene expression and mineral deposits observed after hDPSCs osteogenesis on a PLCL mat indicated its better impact on hDPSCs' osteogenic potential than that of HYAFF-11™, and hDPSC/PLCL constructs might be considered in the future as an innovative approach to bone defect repair.
Collapse
Affiliation(s)
- Julia K. Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Anna Lis-Nawara
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Tomasz Kowalczyk
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research (IPPT PAN), Polish Academy of Sciences, Adolfa Pawińskiego 5B St., 02-106 Warsaw, Poland;
| | - Piotr G. Grelewski
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Sandra Stamnitz
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland;
| | - Hanna Gerber
- Department of Maxillofacial Surgery, Wroclaw Medical University, Borowska 213, 50-556Wroclaw, Poland;
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland;
| |
Collapse
|
10
|
Cell–scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioact Mater 2023; 23:16-44. [DOI: 10.1016/j.bioactmat.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
|
11
|
Yan M, Wang W, Speth U, Kluwe L, Fuest S, Gosau M, Smeets R, Feng HC, Friedrich RE. Characterization of Dental Pulp Stem Cell Populations in the Teeth of Patients With Neurofibromatosis Type 1 - Therapeutic Potential for Bone Tissue Engineering. In Vivo 2023; 37:548-558. [PMID: 36881087 PMCID: PMC10026680 DOI: 10.21873/invivo.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND/AIM Neurofibromas (NF) are the most common benign nerve sheath tumors in the tongue, gingiva, major salivary glands, and jaw bones. Nowadays, tissue engineering is a revolutionary technique for reconstructing tissues. To explore the feasibility of using stem cells derived from NF teeth to treat orofacial bone defects, the differences in cell biological properties between an NF teeth group and Normal teeth group. PATIENTS AND METHODS The intra-dental pulp tissues from each tooth were extracted. The cell survival rates, morphology, proliferation rates, cell activity, and differentiation abilities were contrastively analyzed between the NF teeth group and Normal teeth group. RESULTS Between the two groups, there were no differences in the primary generation (P0) cells (p>0.05), the cell yield, and the time required for the cells to grow out of the pulp tissue and attach to the culture plate. Furthermore, no differences were found at the first generation (passage) between the two groups in colony formation rate and cell survival rate. The proliferation capacity, cell growth curve, and surface marker expression of dental pulp cells was not altered in the third generation (p>0.05). CONCLUSION Dental pulp stem cells from NF teeth were successfully obtained and were not different from normal dental pulp stem cells. Although, clinical research using tissue-engineered bone to repair bone defects is still in its infancy, it will eventually enter the clinic and become a routine means of bone defect reconstruction treatment as related disciplines and technologies develop.
Collapse
Affiliation(s)
- Ming Yan
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wang Wang
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Speth
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lan Kluwe
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of "Regenerative Orofacial Medicine", University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of "Regenerative Orofacial Medicine", University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of "Regenerative Orofacial Medicine", University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hong-Chao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, P.R. China
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Han J, Park S, Kim JE, Park B, Hong Y, Lim JW, Jeong S, Son H, Kim HB, Seonwoo H, Jang KJ, Chung JH. Development of a Scaffold-on-a-Chip Platform to Evaluate Cell Infiltration and Osteogenesis on the 3D-Printed Scaffold for Bone Regeneration. ACS Biomater Sci Eng 2023; 9:968-977. [PMID: 36701173 DOI: 10.1021/acsbiomaterials.2c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developing a scaffold for efficient and functional bone regeneration remains challenging. To accomplish this goal, a "scaffold-on-a-chip" device was developed as a platform to aid with the evaluation process. The device mimics a microenvironment experienced by a transplanted bone scaffold. The device contains a circular space at the center for scaffold insert and microfluidic channel that encloses the space. Such a design allows for monitoring of cell behavior at the blood-scaffold interphase. MC3T3-E1 cells were cultured with three different types of scaffold inserts to test its capability as an evaluation platform. Cellular behaviors, including migration, morphology, and osteogenesis with each scaffold, were analyzed through fluorescence images of live/dead assay and immunocytochemistry. Cellular behaviors, such as migration, morphology, and osteogenesis, were evaluated. The results revealed that our platform could effectively evaluate the osteoconductivity and osteoinductivity of scaffolds with various properties. In conclusion, our proposed platform is expected to replace current in vivo animal models as a highly relevant in vitro platform and can contribute to the fundamental study of bone regeneration.
Collapse
Affiliation(s)
- Jinsub Han
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea.,Convergence Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangbae Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae Eun Kim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
| | - Byeongjoo Park
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
| | - Yeonggeol Hong
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Korea
| | - Jae Woon Lim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Jeong
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hyunmok Son
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hoon Seonwoo
- Department of Convergent Biosystems Engineering, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon 57922, Korea.,Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Korea.,Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jong Hoon Chung
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea.,Convergence Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
13
|
Heitzer M, Modabber A, Zhang X, Winnand P, Zhao Q, Bläsius FM, Buhl EM, Wolf M, Neuss S, Hölzle F, Hildebrand F, Greven J. In vitro comparison of the osteogenic capability of human pulp stem cells on alloplastic, allogeneic, and xenogeneic bone scaffolds. BMC Oral Health 2023; 23:56. [PMID: 36721114 PMCID: PMC9890824 DOI: 10.1186/s12903-023-02726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND A rigorous search for alternatives to autogenous bone grafts to avoid invasiveness at the donor site in the treatment of maxillomandibular bone defects. Researchers have used alloplastic, allogeneic, and xenogeneic bone graft substitutes in clinical studies with varying degrees of success, although their in vitro effects on stem cells remain unclear. Dental pulp stem cells (DPSCs) can potentially enhance the bone regeneration of bone graft substitutes. The present in vitro study investigates the osteogenic capability of DPSCs on alloplastic (biphasic calcium phosphate [BCP]), allogeneic (freeze-dried bone allografts [FDBAs]), and xenogeneic (deproteinized bovine bone mineral [DBBM]) bone grafts. METHODS Human DPSCs were seeded on 0.5 mg/ml, 1 mg/ml, and 2 mg/ml of BCP, FDBA, and DBBM to evaluate the optimal cell growth and cytotoxicity. Scaffolds and cell morphologies were analyzed by scanning electron microscopy (SEM). Calcein AM and cytoskeleton staining were performed to determine cell attachment and proliferation. Alkaline phosphatase (ALP) and osteogenesis-related genes expressions was used to investigate initial osteogenic differentiation. RESULTS Cytotoxicity assays showed that most viable DPSCs were present at a scaffold concentration of 0.5 mg/ml. The DPSCs on the DBBM scaffold demonstrated a significantly higher proliferation rate of 214.25 ± 16.17 (p < 0.001) cells, enhancing ALP activity level and upregulating of osteogenesis-related genes compared with other two scaffolds. CONCLUSION DBBP scaffold led to extremely high cell viability, but also promoted proliferation, attachment, and enhanced the osteogenic differentiation capacity of DPSCs, which hold great potential for bone regeneration treatment; however, further studies are necessary.
Collapse
Affiliation(s)
- Marius Heitzer
- grid.412301.50000 0000 8653 1507Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ali Modabber
- grid.412301.50000 0000 8653 1507Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Xing Zhang
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Philipp Winnand
- grid.412301.50000 0000 8653 1507Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Qun Zhao
- grid.412301.50000 0000 8653 1507Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Felix Marius Bläsius
- grid.412301.50000 0000 8653 1507Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Eva Miriam Buhl
- grid.412301.50000 0000 8653 1507Institute of Pathology, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Michael Wolf
- grid.412301.50000 0000 8653 1507Department of Orthodontics, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sabine Neuss
- grid.412301.50000 0000 8653 1507Institute of Pathology, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XHelmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Frank Hölzle
- grid.412301.50000 0000 8653 1507Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Frank Hildebrand
- grid.412301.50000 0000 8653 1507Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Johannes Greven
- grid.412301.50000 0000 8653 1507Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
14
|
Inchingolo AM, Malcangi G, Ferrara I, Viapiano F, Netti A, Buongiorno S, Latini G, Azzollini D, De Leonardis N, de Ruvo E, Mancini A, Rapone B, Venere DD, Patano A, Avantario P, Tartaglia GM, Lorusso F, Scarano A, Sauro S, Fatone MC, Bordea IR, Inchingolo F, Inchingolo AD, Dipalma G. Laser Surgical Approach of Upper Labial Frenulum: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1302. [PMID: 36674058 PMCID: PMC9859463 DOI: 10.3390/ijerph20021302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
An abnormal and hypertrophied upper labial frenulum (ULF) can cause diastemas, gingival recession, eruption abnormalities, and the onset of carious and periodontal problems in the upper central incisors, as well as aesthetic and functional disorders of the upper lip. The goal of this investigation is to review the evidence on the surgical techniques that are currently available for treating ULF in order to identify the best approach. PubMed, Scopus, Cochrane Library, and Embase were searched for papers that matched our topic from 13 November 2012 up to 22 November 2022 using the following Boolean keywords: "frenulum" and "surgery*". A total of eight articles were selected for the purpose of the review. ULF can be surgically treated using either traditional scalpel surgery or laser surgery. The latter is the better option due to its intra- and post-operative benefits for both the patients and the clinicians, in terms of faster healing, fewer side effects and discomfort, and greater patient compliance. However, a higher learning curve is required for this technique, especially to calibrate the appropriate power of the laser. To date, it is not possible to identify which type of laser achieves the best clinical results for the treatment of ULF.
Collapse
Affiliation(s)
- Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Irene Ferrara
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Anna Netti
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Silvio Buongiorno
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giulia Latini
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Assunta Patano
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Avantario
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Salvatore Sauro
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | | | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
15
|
Effect of Biodentine on Odonto/Osteogenic Differentiation of Human Dental Pulp Stem Cells. Bioengineering (Basel) 2022; 10:bioengineering10010012. [PMID: 36671584 PMCID: PMC9854827 DOI: 10.3390/bioengineering10010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
This study aims to compare the biological characteristics of human dental pulp stem cells (hDPSCs) isolated from different-aged populations and examine the effects of Biodentine on proliferation and odonto/osteogenic differentiation of hDPSCs isolated from the elderly in vitro. hDPSCs were isolated from three different-aged populations: group A (≤18 years old), group B (19−59 years old), and group C (≥60 years old). The adhesion, proliferation, odonto/osteogenesis, and senescence were compared. The optimal concentration of aqueous Biodentine extract was determined by CCK-8 assay, alkaline phosphatase (ALP), and alizarin red staining (ARS). The effect of Biodentine on odonto/osteogenic gene and protein expression of hDPSCs in each group was evaluated by quantitative real-time PCR (QRT-PCR) and Western blot. hDPSCs were successfully isolated from three different-aged populations. Flow cytometry revealed that all isolated hDPSCs were positive for CD73 (>90%), CD90 (>90%), CD146 (<30%), and negative for CD45 (<1%). There existed an age-related decline in proliferation, odonto/osteogenic gene expression, and S-phase fraction (p < 0.05), an increase in senescence genes and p21 and p16 expression, and time needed for cell adhesion. Biodentine promoted hDPSC proliferation and mineralization in each group, particularly at a concentration of 0.2 mg/mL. Biodentine markedly enhanced odonto/osteogenesis-related gene and protein expression in each group (p < 0.05). hDPSCs can be obtained from populations of all ages. Though there is an age-related decline in their biological properties, hDPSCs from the elderly still maintain certain proliferation and multidirectional differentiation abilities. Biodentine can significantly promote the proliferation and odonto/osteogenic differentiation of hDPSCs isolated from the elderly over 60 years old, which could be considered a pulp capping material for vital pulp therapy in the elderly. Nevertheless, the efficacy of Biodentine in clinical application has to be further studied.
Collapse
|
16
|
Song W, Bo X, Ma X, Hou K, Li D, Geng W, Zeng J. Craniomaxillofacial derived bone marrow mesenchymal stem/stromal cells (BMSCs) for craniomaxillofacial bone tissue engineering: A literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e650-e659. [PMID: 35691558 DOI: 10.1016/j.jormas.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
Craniomaxillofacial bone defects seriously affect the appearance, function, and psychological status of patients. Traditional autologous bone grafting is very challenging due to the limited sources of bone tissue, excessive surgical trauma, and high incidence of related complications. Craniomaxillofacial bone tissue engineering (BTE) strategies based on bone marrow mesenchymal stem cells (BMSCs) are emerging as an alternative. Craniomaxillofacial BMSCs (C-BMSCs) are homologous to craniomaxillofacial bones, which develop from the mesoderm and neural crest. This article aims to compare the differences in osteogenesis, angiogenesis, and immune regulation of C-BMSCs and other sources of BMSCs, and propose ideas and strategies such as 3D printing and mechanotherapy to completely harness the characteristics of C-BMSCs. In conclusion, C-BSMCs are a promising source of stem cells for the repair and reconstruction of craniomaxillofacial bone defects, and more attention should be paid to accelerating their basic research and clinical practices.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaowen Bo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xiaohan Ma
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Kegui Hou
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China; Department of Stomatology, Shunyi District Hospital affiliated to Capital Medical University, Beijing, China
| | - Dan Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jianyu Zeng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Zha K, Tian Y, Panayi AC, Mi B, Liu G. Recent Advances in Enhancement Strategies for Osteogenic Differentiation of Mesenchymal Stem Cells in Bone Tissue Engineering. Front Cell Dev Biol 2022; 10:824812. [PMID: 35281084 PMCID: PMC8904963 DOI: 10.3389/fcell.2022.824812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Although bone is an organ that displays potential for self-healing after damage, bone regeneration does not occur properly in some cases, and it is still a challenge to treat large bone defects. The development of bone tissue engineering provides a new approach to the treatment of bone defects. Among various cell types, mesenchymal stem cells (MSCs) represent one of the most promising seed cells in bone tissue engineering due to their functions of osteogenic differentiation, immunomodulation, and secretion of cytokines. Regulation of osteogenic differentiation of MSCs has become an area of extensive research over the past few years. This review provides an overview of recent research progress on enhancement strategies for MSC osteogenesis, including improvement in methods of cell origin selection, culture conditions, biophysical stimulation, crosstalk with macrophages and endothelial cells, and scaffolds. This is favorable for further understanding MSC osteogenesis and the development of MSC-based bone tissue engineering.
Collapse
Affiliation(s)
- Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yue Tian
- Department of Military Patient Management, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| |
Collapse
|
18
|
Inchingolo F, Hazballa D, Inchingolo AD, Malcangi G, Marinelli G, Mancini A, Maggiore ME, Bordea IR, Scarano A, Farronato M, Tartaglia GM, Lorusso F, Inchingolo AM, Dipalma G. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1120. [PMID: 35161065 PMCID: PMC8839672 DOI: 10.3390/ma15031120] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND For decades, regenerative medicine and dentistry have been improved with new therapies and innovative clinical protocols. The aim of the present investigation was to evaluate through a critical review the recent innovations in the field of bone regeneration with a focus on the healing potentials and clinical protocols of bone substitutes combined with engineered constructs, growth factors and photobiomodulation applications. METHODS A Boolean systematic search was conducted by PubMed/Medline, PubMed/Central, Web of Science and Google scholar databases according to the PRISMA guidelines. RESULTS After the initial screening, a total of 304 papers were considered eligible for the qualitative synthesis. The articles included were categorized according to the main topics: alloplastic bone substitutes, autologous teeth derived substitutes, xenografts, platelet-derived concentrates, laser therapy, microbiota and bone metabolism and mesenchymal cells construct. CONCLUSIONS The effectiveness of the present investigation showed that the use of biocompatible and bio-resorbable bone substitutes are related to the high-predictability of the bone regeneration protocols, while the oral microbiota and systemic health of the patient produce a clinical advantage for the long-term success of the regeneration procedures and implant-supported restorations. The use of growth factors is able to reduce the co-morbidity of the regenerative procedure ameliorating the post-operative healing phase. The LLLT is an adjuvant protocol to improve the soft and hard tissues response for bone regeneration treatment protocols.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Maria Elena Maggiore
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| |
Collapse
|
19
|
Staniowski T, Zawadzka-Knefel A, Skośkiewicz-Malinowska K. Therapeutic Potential of Dental Pulp Stem Cells According to Different Transplant Types. Molecules 2021; 26:7423. [PMID: 34946506 PMCID: PMC8707085 DOI: 10.3390/molecules26247423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
Stem cells are unspecialised cells capable of perpetual self-renewal, proliferation and differentiation into more specialised daughter cells. They are present in many tissues and organs, including the stomatognathic system. Recently, the great interest of scientists in obtaining stem cells from human teeth is due to their easy availability and a non-invasive procedure of collecting the material. Three key components are required for tissue regeneration: stem cells, appropriate scaffold material and growth factors. Depending on the source of the new tissue or organ, there are several types of transplants. In this review, the following division into four transplant types is applied due to genetic differences between the donor and the recipient: xenotransplantation, allotransplantation, autotransplantation and isotransplantation (however, due to the lack of research, type was not included). In vivo studies have shown that Dental Pulp Stem Cells (DPSCs)can form a dentin-pulp complex, nerves, adipose, bone, cartilage, skin, blood vessels and myocardium, which gives hope for their use in various biomedical areas, such as immunotherapy and regenerative therapy. This review presents the current in vivo research and advances to provide new biological insights and therapeutic possibilities of using DPSCs.
Collapse
Affiliation(s)
| | - Anna Zawadzka-Knefel
- Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, 50-425 Wrocław, Poland; (T.S.); (K.S.-M.)
| | | |
Collapse
|
20
|
Hao X, Li D, Zhang D, Jia L. Microarray analysis of long non-coding RNAs related to osteogenic differentiation of human dental pulp stem cells. J Dent Sci 2021; 17:733-743. [PMID: 35756759 PMCID: PMC9201533 DOI: 10.1016/j.jds.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Background/purpose Dental pulp stem cells (DPSCs) are candidate seed cells for bone tissue engineering, but the molecular regulation of osteogenic differentiation in DPSCs is not fully understood. Long non-coding RNAs (lncRNAs) are important regulators of gene expression, and whether they play roles in osteogenic differentiation of DPSCs requires more study. Materials and methods DPSCs were isolated and cultured. The mRNA and lncRNA expression profiles were compared through microarray assay between osteo-differentiated DPSCs and non-differentiated DPSCs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, Gene ontology (GO) analyses, and the mRNA-lncRNA co-expression analyses were performed for functional annotation of differentially expressed RNAs. Small interfering RNA (siRNA) was used to interfere the expression of lncRNA ENST00000533992 (also named smooth muscle-induced lncRNA or SMILR), a candidate regulator, then the osteogenic differentiation potential of DPSCs was analyzed. Results DPSCs were isolated and cultured successfully. The expression of 273 mRNAs and 184 lncRNAs changed significantly in DPSCs after osteogenic induction. KEGG analyses and GO analyses showed that the differentially expressed RNAs were enriched in several pathways and biological processes. The mRNA-lncRNA co-expression network was constructed to reveal the potential relationships between mRNAs and lncRNAs. The osteogenic differentiation potential of DPSCs decreased when SMILR was interfered. Conclusion The present study provides clues for seeking for lncRNAs that participate in the regulation of osteogenic differentiation in DPSCs. LncRNA SMILR could play a role in regulating osteogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Xinyu Hao
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongfang Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Linglu Jia
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Corresponding author. School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China. Fax: +86 531 88382923.
| |
Collapse
|
21
|
Oral Cavity as a Source of Mesenchymal Stem Cells Useful for Regenerative Medicine in Dentistry. Biomedicines 2021; 9:biomedicines9091085. [PMID: 34572271 PMCID: PMC8469189 DOI: 10.3390/biomedicines9091085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) for regenerative purposes has become common in a large variety of diseases. In the dental and maxillofacial field, there are emerging clinical needs that could benefit from MSC-based therapeutic approaches. Even though MSCs can be isolated from different tissues, such as bone marrow, adipose tissue, etc., and are known for their multilineage differentiation, their different anatomical origin can affect the capability to differentiate into a specific tissue. For instance, MSCs isolated from the oral cavity might be more effective than adipose-derived stem cells (ASCs) for the treatment of dental defects. Indeed, in the oral cavity, there are different sources of MSCs that have been individually proposed as promising candidates for tissue engineering protocols. The therapeutic strategy based on MSCs can be direct, by using cells as components of the tissue to be regenerated, or indirect, aimed at delivering local growth factors, cytokines, and chemokines produced by the MSCs. Here, the authors outline the major sources of mesenchymal stem cells attainable from the oral cavity and discuss their possible usage in some of the most compelling therapeutic frontiers, such as periodontal disease and dental pulp regeneration.
Collapse
|
22
|
Maxillofacial-Derived Mesenchymal Stem Cells: Characteristics and Progress in Tissue Regeneration. Stem Cells Int 2021; 2021:5516521. [PMID: 34426741 PMCID: PMC8379387 DOI: 10.1155/2021/5516521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Maxillofacial-derived mesenchymal stem cells (MFSCs) are a particular collective type of mesenchymal stem cells (MSCs) that originate from the hard and soft tissue of the maxillofacial region. Recently, many types of MFSCs have been isolated and characterized. MFSCs have the common characteristics of being extremely accessible and amazingly multipotent and thus have become a promising stem cell resource in tissue regeneration. However, different MFSCs can give rise to different cell lineages, have different advantages in clinical use, and regulate the immune and inflammation microenvironment through paracrine mechanisms in different ways. Hence, in this review, we will concentrate on the updated new findings of all types of MFSCs in tissue regeneration and also introduce the recently discovered types of MFSCs. Important issues about proliferation and differentiation in vitro and in vivo, up-to-date clinical application, and paracrine effect of MFSCs in tissue regeneration will also be discussed. Our review may provide a better guide for the clinical use of MFSCs and further direction of research in MFSC regeneration medicine.
Collapse
|
23
|
Bellocchio L, Inchingolo AD, Inchingolo AM, Lorusso F, Malcangi G, Santacroce L, Scarano A, Bordea IR, Hazballa D, D’Oria MT, Isacco CG, Nucci L, Serpico R, Tartaglia GM, Giovanniello D, Contaldo M, Farronato M, Dipalma G, Inchingolo F. Cannabinoids Drugs and Oral Health-From Recreational Side-Effects to Medicinal Purposes: A Systematic Review. Int J Mol Sci 2021; 22:ijms22158329. [PMID: 34361095 PMCID: PMC8347083 DOI: 10.3390/ijms22158329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background: marijuana, the common name for cannabis sativa preparations, is one of the most consumed drug all over the world, both at therapeutical and recreational levels. With the legalization of medical uses of cannabis in many countries, and even its recreational use in most of these, the prevalence of marijuana use has markedly risen over the last decade. At the same time, there is also a higher prevalence in the health concerns related to cannabis use and abuse. Thus, it is mandatory for oral healthcare operators to know and deal with the consequences and effects of cannabis use on oral cavity health. This review will briefly summarize the components of cannabis and the endocannabinoid system, as well as the cellular and molecular mechanisms of biological cannabis action in human cells and biologic activities on tissues. We will also look into oropharyngeal tissue expression of cannabinoid receptors, together with a putative association of cannabis to several oral diseases. Therefore, this review will elaborate the basic biology and physiology of cannabinoids in human oral tissues with the aim of providing a better comprehension of the effects of its use and abuse on oral health, in order to include cannabinoid usage into dental patient health records as well as good medicinal practice. Methods: the paper selection was performed by PubMed/Medline and EMBASE electronic databases, and reported according to the PRISMA guidelines. The scientific products were included for qualitative analysis. Results: the paper search screened a total of 276 papers. After the initial screening and the eligibility assessment, a total of 32 articles were considered for the qualitative analysis. Conclusions: today, cannabis consumption has been correlated to a higher risk of gingival and periodontal disease, oral infection and cancer of the oral cavity, while the physico-chemical activity has not been completely clarified. Further investigations are necessary to evaluate a therapeutic efficacy of this class of drugs for the promising treatment of several different diseases of the salivary glands and oral diseases.
Collapse
Affiliation(s)
- Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, University of Bordeaux, 33063 Bordeaux, France
- Correspondence: (L.B.); (F.L.); (I.R.B.); Tel.: +33646298623 (L.B.); +39-32-8213-2586 (F.L.); +40-74-4919319 (I.R.B.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence: (L.B.); (F.L.); (I.R.B.); Tel.: +33646298623 (L.B.); +39-32-8213-2586 (F.L.); +40-74-4919319 (I.R.B.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (L.B.); (F.L.); (I.R.B.); Tel.: +33646298623 (L.B.); +39-32-8213-2586 (F.L.); +40-74-4919319 (I.R.B.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
- Department of Medical and Biological Sciences, University of Udine, via delle Scienze, 206, 33100 Udine, Italy
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
- Human Stem Cells Research Center HSC, Ho Chi Minh 70000, Vietnam
- Embryology and Regenerative Medicine and Immunology at Pham Chau Trinh, University of Medicine, Hoi An 51300, Vietnam
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, via Luigi de Crecchio, 680138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Rosario Serpico
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, via Luigi de Crecchio, 680138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (G.M.T.); (M.F.)
| | - Delia Giovanniello
- Hospital A.O.S.G. Moscati, Contrada Amoretta, cap, 83100 Avellino, Italy;
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, via Luigi de Crecchio, 680138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (G.M.T.); (M.F.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| |
Collapse
|