1
|
Wakim JG, Spakowitz AJ. Physical modeling of nucleosome clustering in euchromatin resulting from interactions between epigenetic reader proteins. Proc Natl Acad Sci U S A 2024; 121:e2317911121. [PMID: 38900792 PMCID: PMC11214050 DOI: 10.1073/pnas.2317911121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/15/2024] [Indexed: 06/22/2024] Open
Abstract
Euchromatin is an accessible phase of genetic material containing genes that encode proteins with increased expression levels. The structure of euchromatin in vitro has been described as a 30-nm fiber formed from ordered nucleosome arrays. However, recent advances in microscopy have revealed an in vivo euchromatin architecture that is much more disordered, characterized by variable-length linker DNA and sporadic nucleosome clusters. In this work, we develop a theoretical model to elucidate factors contributing to the disordered in vivo architecture of euchromatin. We begin by developing a 1D model of nucleosome positioning that captures the interactions between bound epigenetic reader proteins to predict the distribution of DNA linker lengths between adjacent nucleosomes. We then use the predicted linker lengths to construct 3D chromatin configurations consistent with the physical properties of DNA within the nucleosome array, and we evaluate the distribution of nucleosome cluster sizes in those configurations. Our model reproduces experimental cluster-size distributions, which are dramatically influenced by the local pattern of epigenetic marks and the concentration of reader proteins. Based on our model, we attribute the disordered arrangement of euchromatin to the heterogeneous binding of reader proteins and subsequent short-range interactions between bound reader proteins on adjacent nucleosomes. By replicating experimental results with our physics-based model, we propose a mechanism for euchromatin organization in the nucleus that impacts gene regulation and the maintenance of epigenetic marks.
Collapse
Affiliation(s)
- Joseph G. Wakim
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Andrew J. Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
- Biophysics Program, Stanford University, Stanford, CA94305
- Department of Applied Physics, Stanford University, Stanford, CA94305
| |
Collapse
|
2
|
Cleri F, Giordano S, Blossey R. Nucleosome Array Deformation in Chromatin is Sustained by Bending, Twisting and Kinking of Linker DNA. J Mol Biol 2023; 435:168263. [PMID: 37678705 DOI: 10.1016/j.jmb.2023.168263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Chromatin in the nucleus undergoes mechanical stresses from different sources during the various stages of cell life. Here a trinucleosome array is used as the minimal model to study the mechanical response to applied stress at the molecular level. By using large-scale, all-atom steered-molecular dynamics simulations, we show that the largest part of mechanical stress in compression is accommodated by the DNA linkers joining pairs of nucleosomes, which store the elastic energy accumulated by the applied force. Different mechanical instabilities (Euler bending, Brazier kinking, twist-bending) can deform the DNA canonical structure, as a function of the increasing force load. An important role of the histone tails in assisting the DNA deformation is highlighted. The overall response of the smallest chromatin fragment to compressive stress leaves the nucleosome assembly with a substantial plastic deformation and localised defects, which can have a potential impact on DNA transcription, downstream signaling pathways, the regulation of gene expression, and DNA repair.
Collapse
Affiliation(s)
- Fabrizio Cleri
- Université de Lille, Institut d'Electronique Microelectronique et Nanotechnologie (IEMN CNRS UMR8520) and Département de Physique, 59652 Villeneuve d'Ascq, France.
| | - Stefano Giordano
- University of Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Électronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France
| | - Ralf Blossey
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
3
|
Karl LA, Galanti L, Bantele SC, Metzner F, Šafarić B, Rajappa L, Foster B, Pires VB, Bansal P, Chacin E, Basquin J, Duderstadt KE, Kurat CF, Bartke T, Hopfner KP, Pfander B. A SAM-key domain required for enzymatic activity of the Fun30 nucleosome remodeler. Life Sci Alliance 2023; 6:e202201790. [PMID: 37468166 PMCID: PMC10355287 DOI: 10.26508/lsa.202201790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Fun30 is the prototype of the Fun30-SMARCAD1-ETL subfamily of nucleosome remodelers involved in DNA repair and gene silencing. These proteins appear to act as single-subunit nucleosome remodelers, but their molecular mechanisms are, at this point, poorly understood. Using multiple sequence alignment and structure prediction, we identify an evolutionarily conserved domain that is modeled to contain a SAM-like fold with one long, protruding helix, which we term SAM-key. Deletion of the SAM-key within budding yeast Fun30 leads to a defect in DNA repair and gene silencing similar to that of the fun30Δ mutant. In vitro, Fun30 protein lacking the SAM-key is able to bind nucleosomes but is deficient in DNA-stimulated ATPase activity and nucleosome sliding and eviction. A structural model based on AlphaFold2 prediction and verified by crosslinking-MS indicates an interaction of the long SAM-key helix with protrusion I, a subdomain located between the two ATPase lobes that is critical for control of enzymatic activity. Mutation of the interaction interface phenocopies the domain deletion with a lack of DNA-stimulated ATPase activation and a nucleosome-remodeling defect, thereby confirming a role of the SAM-key helix in regulating ATPase activity. Our data thereby demonstrate a central role of the SAM-key domain in mediating the activation of Fun30 catalytic activity, thus highlighting the importance of allosteric activation for this class of enzymes.
Collapse
Affiliation(s)
- Leonhard A Karl
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorenzo Galanti
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Genome Stability in Ageing and Disease, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Susanne Cs Bantele
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Felix Metzner
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Barbara Šafarić
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lional Rajappa
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Benjamin Foster
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
| | - Vanessa Borges Pires
- Genome Maintenance Mechanisms in Health and Disease, Institute of Genome Stability in Ageing and Disease, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Priyanka Bansal
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Erika Chacin
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Jerôme Basquin
- Crystallization Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
- Physik Department, Technische Universität München, Munich, Germany
| | - Christoph F Kurat
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Till Bartke
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
| | - Karl-Peter Hopfner
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Boris Pfander
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Genome Stability in Ageing and Disease, CECAD Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Berger F, Muegge K, Richards EJ. Seminars in cell and development biology on histone variants remodelers of H2A variants associated with heterochromatin. Semin Cell Dev Biol 2023; 135:93-101. [PMID: 35249811 PMCID: PMC9440159 DOI: 10.1016/j.semcdb.2022.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/04/2023]
Abstract
Variants of the histone H2A occupy distinct locations in the genome. There is relatively little known about the mechanisms responsible for deposition of specific H2A variants. Notable exceptions are chromatin remodelers that control the dynamics of H2A.Z at promoters. Here we review the steps that identified the role of a specific class of chromatin remodelers, including LSH and DDM1 that deposit the variants macroH2A in mammals and H2A.W in plants, respectively. The function of these remodelers in heterochromatin is discussed together with their multiple roles in genome stability.
Collapse
Affiliation(s)
- Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA.
| | | |
Collapse
|
5
|
Prakash Yadav R, Leskinen S, Ma L, Mäkelä JA, Kotaja N. Chromatin remodelers HELLS, WDHD1 and BAZ1A are dynamically expressed during mouse spermatogenesis. Reproduction 2023; 165:49-63. [PMID: 36194437 PMCID: PMC9782464 DOI: 10.1530/rep-22-0240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Abstract
In brief Proper regulation of heterochromatin is critical for spermatogenesis. This study reveals the dynamic localization patterns of distinct chromatin regulators during spermatogenesis and disrupted sex chromatin status in spermatocytes in the absence of DICER. Abstract Heterochromatin is dynamically formed and organized in differentiating male germ cells, and its proper regulation is a prerequisite for normal spermatogenesis. While heterochromatin is generally transcriptionally silent, we have previously shown that major satellite repeat (MSR) DNA in the pericentric heterochromatin (PCH) is transcribed during spermatogenesis. We have also shown that DICER associates with PCH and is involved in the regulation of MSR-derived transcripts. To shed light on the heterochromatin regulation in the male germline, we studied the expression, localization and heterochromatin association of selected testis-enriched chromatin regulators in the mouse testis. Our results show that HELLS, WDHD1 and BAZ1A are dynamically expressed during spermatogenesis. They display limited overlap in expression, suggesting involvement in distinct heterochromatin-associated processes at different steps of differentiation. We also show that HELLS and BAZ1A interact with DICER and MSR chromatin. Interestingly, deletion of Dicer1 affects the sex chromosome heterochromatin status in late pachytene spermatocytes, as demonstrated by mislocalization of Polycomb protein family member SCML1 to the sex body. These data substantiate the importance of dynamic heterochromatin regulation during spermatogenesis and emphasize the key role of DICER in the maintenance of chromatin status in meiotic male germ cells.
Collapse
Affiliation(s)
- Ram Prakash Yadav
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Sini Leskinen
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Lin Ma
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Juho-Antti Mäkelä
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Noora Kotaja
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Capitanio M, Reconditi M. Editorial to the Special Issue "Molecular Motors: From Single Molecules to Cooperative and Regulatory Mechanisms In Vivo". Int J Mol Sci 2022; 23:ijms23126605. [PMID: 35743049 PMCID: PMC9223856 DOI: 10.3390/ijms23126605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The Molecular motors or motor proteins are able to generate force and do mechanical work that is used to displace a load or produce relative movements between molecules or macromolecular assembles [...].
Collapse
Affiliation(s)
- Marco Capitanio
- Department of Physics and Astronomy, University of Florence, 50019 Florence, Italy;
- LENS—European Laboratory for Non-Linear Spectroscopy, 50019 Florence, Italy
| | - Massimo Reconditi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- PhysioLab, University of Florence, 50019 Florence, Italy
- Correspondence:
| |
Collapse
|
7
|
How Epigenetics Can Enhance Pig Welfare? Animals (Basel) 2021; 12:ani12010032. [PMID: 35011138 PMCID: PMC8749669 DOI: 10.3390/ani12010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetics works as an interface between the individual and its environment to provide phenotypic plasticity to increase individual adaptation capabilities. Recently, a wide variety of epi-genetic findings have indicated evidence for its application in the development of putative epi-biomarkers of stress in farm animals. The purpose of this study was to evaluate previously reported stress epi-biomarkers in swine and encourage researchers to investigate potential paths for the development of a robust molecular tool for animal welfare certification. In this literature review, we report on the scientific concerns in the swine production chain, the management carried out on the farms, and the potential implications of these practices for the animals' welfare and their epigenome. To assess reported epi-biomarkers, we identified, from previous studies, potentially stress-related genes surrounding epi-biomarkers. With those genes, we carried out a functional enrichment analysis of differentially methylated regions (DMRs) of the DNA of swine subjected to different stress-related conditions (e.g., heat stress, intrauterine insult, and sanitary challenges). We identified potential epi-biomarkers for target analysis, which could be added to the current guidelines and certification schemes to guarantee and certify animal welfare on farms. We believe that this technology may have the power to increase consumers' trust in animal welfare.
Collapse
|
8
|
Ni K, Muegge K. LSH catalyzes ATP-driven exchange of histone variants macroH2A1 and macroH2A2. Nucleic Acids Res 2021; 49:8024-8036. [PMID: 34223906 DOI: 10.1093/nar/gkab588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 11/12/2022] Open
Abstract
LSH, a homologue of the ISWI/SNF2 family of chromatin remodelers, is required in vivo for deposition of the histone variants macroH2A1 and macroH2A2 at specific genomic locations. However, it remains unknown whether LSH is directly involved in this process or promotes other factors. Here we show that recombinant LSH interacts in vitro with macroH2A1-H2B and macroH2A2-H2B dimers, but not with H2A.Z-H2B dimers. Moreover, LSH catalyzes the transfer of macroH2A into mono-nucleosomes reconstituted with canonical core histones in an ATP dependent manner. LSH requires the ATP binding site and the replacement process is unidirectional leading to heterotypic and homotypic nucleosomes. Both variants macroH2A1 and macroH2A2 are equally well incorporated into the nucleosome. The histone exchange reaction is specific for histone variant macroH2A, since LSH is not capable to incorporate H2A.Z. These findings define a previously unknown role for LSH in chromatin remodeling and identify a novel molecular mechanism for deposition of the histone variant macroH2A.
Collapse
Affiliation(s)
- Kai Ni
- Epigenetics Section, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|