1
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
2
|
Dvoriantchikova G, Lypka KR, Adis EV, Ivanov D. Multiple types of programmed necrosis such as necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos contribute simultaneously to retinal damage after ischemia-reperfusion. Sci Rep 2022; 12:17152. [PMID: 36229563 PMCID: PMC9561687 DOI: 10.1038/s41598-022-22140-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/10/2022] [Indexed: 01/04/2023] Open
Abstract
Ischemia-reperfusion (IR) injury is implicated in a large array of pathological conditions in the retina. Increasing experimental evidence suggests that programmed necrosis makes a significant contribution to inflammation and retinal damage triggered by IR. Since there are many types of programmed necrosis, it is important to identify those involved in retinal IR to determine the correct treatment. To this end, we used a mouse model of retinal IR and a variety of approaches including RNA-seq data analysis. Our RNA-seq data revealed the rapid development of ischemic pathology in the retina during the first 24 h after reperfusion. We found that at least four types of programmed necrosis including necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos are simultaneously involved in retinal IR. Our data suggest that the high activity of the TNF pathway at the early stage of retinal IR leads to early activation of necroptosis while significant activity of other types of programmed necrosis appears later. Our results indicate that TNF, glutamate, and ferrous iron generated by Steap3 may be key players concurrently triggering at least necroptosis, oxytosis/ferroptosis, and parthanatos in ischemic retinal ganglion cells (RGCs). Thus, multiple signaling cascades involved in programmed necrosis should be synchronously targeted for therapeutic purposes to treat retinal IR.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- grid.26790.3a0000 0004 1936 8606Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136 USA
| | - Karin Rose Lypka
- grid.26790.3a0000 0004 1936 8606Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136 USA
| | - Emily Victoria Adis
- grid.26790.3a0000 0004 1936 8606Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136 USA
| | - Dmitry Ivanov
- grid.26790.3a0000 0004 1936 8606Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
3
|
Narinx N, David K, Walravens J, Vermeersch P, Claessens F, Fiers T, Lapauw B, Antonio L, Vanderschueren D. Role of sex hormone-binding globulin in the free hormone hypothesis and the relevance of free testosterone in androgen physiology. Cell Mol Life Sci 2022; 79:543. [PMID: 36205798 PMCID: PMC11803068 DOI: 10.1007/s00018-022-04562-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/12/2022] [Accepted: 09/17/2022] [Indexed: 11/03/2022]
Abstract
According to the free hormone hypothesis, biological activity of a certain hormone is best reflected by free rather than total hormone concentrations. A crucial element in this theory is the presence of binding proteins, which function as gatekeepers for steroid action. For testosterone, tissue exposure is governed by a delicate equilibrium between free and total testosterone which is determined through interaction with the binding proteins sex hormone-binding globulin and albumin. Ageing, genetics and various pathological conditions influence this equilibrium, hereby possibly modulating hormonal exposure to the target tissues. Despite ongoing controversy on the subject, strong evidence from recent in vitro, in vivo and human experiments emphasizes the relevance of free testosterone. Currently, however, clinical possibilities for free hormone diagnostics are limited. Direct immunoassays are inaccurate, while gold standard liquid chromatography with tandem mass spectrometry (LC-MS/MS) coupled equilibrium dialysis is not available for clinical routine. Calculation models for free testosterone, despite intrinsic limitations, provide a suitable alternative, of which the Vermeulen calculator is currently the preferred method. Calculated free testosterone is indeed associated with bone health, frailty and other clinical endpoints. Moreover, the added value of free testosterone in the clinical diagnosis of male hypogonadism is clearly evident. In suspected hypogonadal men in whom borderline low total testosterone and/or altered sex hormone-binding globulin levels are detected, the determination of free testosterone avoids under- and overdiagnosis, facilitating adequate prescription of hormonal replacement therapy. As such, free testosterone should be integrated as a standard biochemical parameter, on top of total testosterone, in the diagnostic workflow of male hypogonadism.
Collapse
Affiliation(s)
- N Narinx
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - K David
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - J Walravens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - P Vermeersch
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - F Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - T Fiers
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - B Lapauw
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - L Antonio
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - D Vanderschueren
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000, Leuven, Belgium.
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Qiu-Yue X, Tian-Yuan Y, Xiao-Long W, Dong-Mei Q, Xiao-Rui C. Effects of Metformin on Modulating the Expression of Brain-related Genes of APP/PS1 Transgenic Mice based on Single Cell Sequencing. Curr Alzheimer Res 2022; 19:754-771. [PMID: 36464874 DOI: 10.2174/1567205020666221201143323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Alzheimer's disease is the most common form of dementia, affecting millions of people worldwide. METHODS Here, we analyzed the effects of metformin on APP/PS1 transgenic mice by behavioral test and single-cell sequencing. RESULTS It showed that metformin can improve the spatial learning, memory function, and anxiety mood of APP/PS1 transgenic mice. We identified transcriptionally distinct subpopulations of nine major brain cell types. Metformin increased the differentiation of stem cells, decreased the proportion of cells in the G2 phase, enhanced the generation of neural stem cells and oligodendrocyte progenitor cells, and the tendency of neural stem cells to differentiate into astrocytes. Notably, 253 genes expressed abnormally in APP/PS1 transgenic mice and were reversed by metformin. Ttr, Uba52, and Rps21 are the top 3 genes in the cell-gene network with the highest node degree. Moreover, histochemistry showed the expressions of RPS15, Uba52, and RPL23a were consistent with the data from single-cell sequencing. Pathway and biological process enrichment analysis indicated metformin was involved in nervous system development and negative regulation of the apoptotic process. CONCLUSION Overall, metformin might play an important role in the differentiation and development and apoptotic process of the central nervous system by regulating the expression of Ttr, Uba52, Rps21, and other genes to improve cognition of APP/PS1 transgenic mice. These results provided a clue for elaborating on the molecular and cellular basis of metformin on AD.
Collapse
Affiliation(s)
- Xiao Qiu-Yue
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ye Tian-Yuan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wang Xiao-Long
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qi Dong-Mei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Cheng Xiao-Rui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
5
|
Liu L, Guo P, Wang P, Zheng S, Qu Z, Liu N. The Review of Anti-aging Mechanism of Polyphenols on Caenorhabditis elegans. Front Bioeng Biotechnol 2021; 9:635768. [PMID: 34327192 PMCID: PMC8314386 DOI: 10.3389/fbioe.2021.635768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Micronutrients extracted from natural plants or made by biological synthesis are widely used in anti-aging research and applications. Among more than 30 effective anti-aging substances, employing polyphenol organic compounds for modification or delaying of the aging process attracts great interest because of their distinct contribution in the prevention of degenerative diseases, such as cardiovascular disease and cancer. There is a profound potential for polyphenol extracts in the research of aging and the related diseases of the elderly. Previous studies have mainly focused on the properties of polyphenols implicated in free radical scavenging; however, the anti-oxidant effect cannot fully elaborate its biological functions, such as neuroprotection, Aβ protein production, ion channel coupling, and signal transduction pathways. Caenorhabditis elegans (C. elegans) has been considered as an ideal model organism for exploring the mechanism of anti-aging research and is broadly utilized in screening for natural bioactive substances. In this review, we have described the molecular mechanisms and pathways responsible for the slowdown of aging processes exerted by polyphenols. We also have discussed the possible mechanisms for their anti-oxidant and anti-aging properties in C. elegans from the perspective of different classifications of the specific polyphenols, such as flavonols, anthocyanins, flavan-3-ols, hydroxybenzoic acid, hydroxycinnamic acid, and stilbenes.
Collapse
Affiliation(s)
- Limin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China
| | - Peisen Guo
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peixi Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China
| | - Shanqing Zheng
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhi Qu
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China.,Institute of Environment and Health, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|