1
|
Mansoor S, Hamid S, Tuan TT, Park JE, Chung YS. Advance computational tools for multiomics data learning. Biotechnol Adv 2024; 77:108447. [PMID: 39251098 DOI: 10.1016/j.biotechadv.2024.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
The burgeoning field of bioinformatics has seen a surge in computational tools tailored for omics data analysis driven by the heterogeneous and high-dimensional nature of omics data. In biomedical and plant science research multi-omics data has become pivotal for predictive analytics in the era of big data necessitating sophisticated computational methodologies. This review explores a diverse array of computational approaches which play crucial role in processing, normalizing, integrating, and analyzing omics data. Notable methods such similarity-based methods, network-based approaches, correlation-based methods, Bayesian methods, fusion-based methods and multivariate techniques among others are discussed in detail, each offering unique functionalities to address the complexities of multi-omics data. Furthermore, this review underscores the significance of computational tools in advancing our understanding of data and their transformative impact on research.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea
| | - Saira Hamid
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Pulwama, J&K, India
| | - Thai Thanh Tuan
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea; Multimedia Communications Laboratory, University of Information Technology, Ho Chi Minh city 70000, Vietnam; Multimedia Communications Laboratory, Vietnam National University, Ho Chi Minh city 70000, Vietnam
| | - Jong-Eun Park
- Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju, Jeju-do, Republic of Korea.
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea.
| |
Collapse
|
2
|
Melotto M, Fochs B, Jaramillo Z, Rodrigues O. Fighting for Survival at the Stomatal Gate. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:551-577. [PMID: 39038249 DOI: 10.1146/annurev-arplant-070623-091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied Arabidopsis-Pseudomonas pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.
Collapse
Affiliation(s)
- Maeli Melotto
- Department of Plant Sciences, University of California, Davis, California, USA;
| | - Brianna Fochs
- Department of Plant Sciences, University of California, Davis, California, USA;
- Plant Biology Graduate Group, University of California, Davis, California, USA
| | - Zachariah Jaramillo
- Department of Plant Sciences, University of California, Davis, California, USA;
- Plant Biology Graduate Group, University of California, Davis, California, USA
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse, INP-PURPAN, Toulouse, France
| |
Collapse
|
3
|
Rode S, Kaur H, Sharma M, Shah V, Singh SS, Gubyad M, Ghosh DK, Sircar D, Kumar P, Roy P, Sharma AK. Characterization of Type1 Lipid Transfer Protein from Citrus sinensis: Unraveling its potential as an antimicrobial and insecticidal agent. Int J Biol Macromol 2024; 265:130811. [PMID: 38490399 DOI: 10.1016/j.ijbiomac.2024.130811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/27/2023] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Lipid Transfer Protein1 (LTP1) is a cationic, multifaceted protein belonging to the pathogenesis-related protein (PR14) family. Despite being involved in diverse physiological processes and defense mechanisms, the precise in-vivo role of LTP1 remains undiscovered. This work presents the characterization of recombinant Citrus sinensis LTP1 (CsLTP1) along with lipid binding studies through in-silico and in-vitro approaches. CsLTP1 demonstrated great thermal and pH stability with a huge biotechnological potential. It showed in-vitro binding capacity with jasmonic acid and lipids involved in regulating plant immune responses. Gene expression profiling indicated a significant upregulation of CsLTP1 in Candidatus-infected Citrus plants. CsLTP1 disrupted the cell membrane integrity of various pathogens, making it a potent antimicrobial agent. Further, in-vivo antimicrobial and insecticidal properties of CsLTP1 have been explored. The impact of exogenous CsLTP1 treatment on rice crop metabolism for managing blight disease has been studied using GC-MS. CsLTP1 triggered crucial metabolic pathways in rice plants while controlling the blight disease. CsLTP1 effectively inhibited Helicoverpa armigera larvae by impeding mid-gut α-amylase activity and obstructing its developmental stages. This study highlights the pivotal role of CsLTP1 in plant defense by offering insights for developing multi-target therapeutic agent or disease-resistant varieties to comprehensively tackle the challenges towards crop protection.
Collapse
Affiliation(s)
- Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monica Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Vivek Shah
- Division of Crop Protection, ICAR Central Institute for Cotton Research, Nagpur, India
| | - Shiv Shakti Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mrugendra Gubyad
- Plant Virology Laboratory, Central Citrus Research Institute, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, Central Citrus Research Institute, Nagpur, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
4
|
Wang H, Wang Y, Sang T, Lin Z, Li R, Ren W, Shen X, Zhao B, Wang X, Zhang X, Zhou S, Dai S, Hu H, Song CP, Wang P. Cell type-specific proteomics uncovers a RAF15-SnRK2.6/OST1 kinase cascade in guard cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2122-2137. [PMID: 37226855 DOI: 10.1111/jipb.13536] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023]
Abstract
Multicellular organisms such as plants contain various cell types with specialized functions. Analyzing the characteristics of each cell type reveals specific cell functions and enhances our understanding of organization and function at the organismal level. Guard cells (GCs) are specialized epidermal cells that regulate the movement of the stomata and gaseous exchange, and provide a model genetic system for analyzing cell fate, signaling, and function. Several proteomics analyses of GC are available, but these are limited in depth. Here we used enzymatic isolation and flow cytometry to enrich GC and mesophyll cell protoplasts and perform in-depth proteomics in these two major cell types in Arabidopsis leaves. We identified approximately 3,000 proteins not previously found in the GC proteome and more than 600 proteins that may be specific to GC. The depth of our proteomics enabled us to uncover a guard cell-specific kinase cascade whereby Raf15 and Snf1-related kinase2.6 (SnRK2.6)/OST1(open stomata 1) mediate abscisic acid (ABA)-induced stomatal closure. RAF15 directly phosphorylated SnRK2.6/OST1 at the conserved Ser175 residue in its activation loop and was sufficient to reactivate the inactive form of SnRK2.6/OST1. ABA-triggered SnRK2.6/OST1 activation and stomatal closure was impaired in raf15 mutants. We also showed enrichment of enzymes and flavone metabolism in GC, and consistent, dramatic accumulation of flavone metabolites. Our study answers the long-standing question of how ABA activates SnRK2.6/OST1 in GCs and represents a resource potentially providing further insights into the molecular basis of GC and mesophyll cell development, metabolism, structure, and function.
Collapse
Affiliation(s)
- Hongliang Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yubei Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Sang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Lin
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rongxia Li
- Shanghai Bioprofile Technology Company Ltd, Shanghai, 200241, China
| | - Weiwei Ren
- Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xin Shen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shaojun Dai
- Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Guan Q, David L, Moran R, Grela I, Ortega A, Scott P, Warnock L, Chen S. Role of NPR1 in Systemic Acquired Stomatal Immunity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2137. [PMID: 37299116 PMCID: PMC10255907 DOI: 10.3390/plants12112137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Stomatal immunity is the primary gate of the plant pathogen defense system. Non-expressor of Pathogenesis Related 1 (NPR1) is the salicylic acid (SA) receptor, which is critical for stomatal defense. SA induces stomatal closure, but the specific role of NPR1 in guard cells and its contribution to systemic acquired resistance (SAR) remain largely unknown. In this study, we compared the response to pathogen attack in wild-type Arabidopsis and the npr1-1 knockout mutant in terms of stomatal movement and proteomic changes. We found that NPR1 does not regulate stomatal density, but the npr1-1 mutant failed to close stomata when under pathogen attack, resulting in more pathogens entering the leaves. Moreover, the ROS levels in the npr1-1 mutant were higher than in the wild type, and several proteins involved in carbon fixation, oxidative phosphorylation, glycolysis, and glutathione metabolism were differentially changed in abundance. Our findings suggest that mobile SAR signals alter stomatal immune response possibly by initiating ROS burst, and the npr1-1 mutant has an alternative priming effect through translational regulation.
Collapse
Affiliation(s)
- Qijie Guan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Lisa David
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Riley Moran
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ivan Grela
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Angelica Ortega
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Peter Scott
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Lindsey Warnock
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institue (UFGI), University of Florida, Gainesville, FL 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Li Y, Zhu W, Xiang Q, Kim J, Dufresne C, Liu Y, Li T, Chen S. Creation of a Plant Metabolite Spectral Library for Untargeted and Targeted Metabolomics. Int J Mol Sci 2023; 24:ijms24032249. [PMID: 36768571 PMCID: PMC9916794 DOI: 10.3390/ijms24032249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Large-scale high throughput metabolomic technologies are indispensable components of systems biology in terms of discovering and defining the metabolite parts of the system. However, the lack of a plant metabolite spectral library limits the metabolite identification of plant metabolomic studies. Here, we have created a plant metabolite spectral library using 544 authentic standards, which increased the efficiency of identification for untargeted metabolomic studies. The process of creating the spectral library was described, and the mzVault library was deposited in the public repository for free download. Furthermore, based on the spectral library, we describe a process of creating a pseudo-targeted method, which was applied to a proof-of-concept study of Arabidopsis leaf extracts. As authentic standards become available, more metabolite spectra can be easily incorporated into the spectral library to improve the mzVault package.
Collapse
Affiliation(s)
- Yangyang Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Wei Zhu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Qingyuan Xiang
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32610, USA
| | - Craig Dufresne
- Thermo Scientific Training Institute, West Palm Beach, FL 32407, USA
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
- Correspondence:
| |
Collapse
|
7
|
Crystal structure of transcription factor TGA7 from Arabidopsis. Biochem Biophys Res Commun 2022; 637:322-330. [DOI: 10.1016/j.bbrc.2022.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
|
8
|
Skirycz A, Fernie AR. Past accomplishments and future challenges of the multi-omics characterization of leaf growth. PLANT PHYSIOLOGY 2022; 189:473-489. [PMID: 35325227 PMCID: PMC9157134 DOI: 10.1093/plphys/kiac136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The advent of omics technologies has revolutionized biology and advanced our understanding of all biological processes, including major developmental transitions in plants and animals. Here, we review the vast knowledge accumulated concerning leaf growth in terms of transcriptional regulation before turning our attention to the historically less well-characterized alterations at the protein and metabolite level. We will then discuss how the advent of biochemical methods coupled with metabolomics and proteomics can provide insight into the protein-protein and protein-metabolite interactome of the growing leaves. We finally highlight the substantial challenges in detection, spatial resolution, integration, and functional validation of the omics results, focusing on metabolomics as a prerequisite for a comprehensive understanding of small-molecule regulation of plant growth.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Cornell University, Ithaca, New York 14853, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| |
Collapse
|
9
|
Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. Int J Biol Macromol 2022; 212:381-392. [PMID: 35623457 DOI: 10.1016/j.ijbiomac.2022.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023]
Abstract
N-glycosylation, an important post-translational modification of proteins in all eukaryotes, has been clearly shown to be involved in numerous diseases in mammalian systems. In contrast, little is known regarding the role of protein N-glycosylation in plant defensive responses to pathogen infection. We identified, for the first time, glycoproteins related to systemic acquired resistance (SAR) in an Arabidopsis thaliana model, using a glycoproteomics platform based on high-resolution mass spectrometry. 407 glycosylation sites corresponding to 378 glycopeptides and 273 unique glycoproteins were identified. 65 significantly changed glycoproteins with 80 N-glycosylation sites were detected in systemic leaves of SAR-induced plants, including numerous GDSL-like lipases, thioglucoside glucohydrolases, kinases, and glycosidases. Functional enrichment analysis revealed that significantly changed glycoproteins were involved mainly in N-glycan biosynthesis and degradation, phenylpropanoid biosynthesis, cutin and wax biosynthesis, and plant-pathogen interactions. Comparative analysis of glycoproteomics and proteomics data indicated that glycoproteomics analysis is an efficient method for screening proteins associated with SAR. The present findings clarify glycosylation status and sites of A. thaliana proteins, and will facilitate further research on roles of glycoproteins in SAR induction.
Collapse
|
10
|
Alginate-Induced Disease Resistance in Plants. Polymers (Basel) 2022; 14:polym14040661. [PMID: 35215573 PMCID: PMC8875150 DOI: 10.3390/polym14040661] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Plants are continuously exposed to a wide range of pathogens, including fungi, bacteria, nematodes, and viruses; therefore, survival under these conditions requires a sophisticated defense system. The activation of defense responses and related signals in plants is regulated mainly by the hormones salicylic acid, jasmonic acid, and ethylene. Resistance to pathogen infection can be induced in plants by various biotic and abiotic agents. For many years, the use of abiotic plant resistance inducers has been considered in integrated disease management programs. Recently, natural inducer compounds, such as alginates, have become a focus of interest due to their environmentally friendly nature and their ability to stimulate plant defense mechanisms and enhance growth. Polysaccharides and the oligosaccharides derived from them are examples of eco-compatible compounds that can enhance plant growth while also inducing plant resistance against pathogens and triggering the expression of the salicylic acid-dependent defense pathway.
Collapse
|
11
|
David L, Kang J, Nicklay J, Dufresne C, Chen S. Identification of DIR1-Dependant Cellular Responses in Guard Cell Systemic Acquired Resistance. Front Mol Biosci 2022; 8:746523. [PMID: 34977152 PMCID: PMC8718647 DOI: 10.3389/fmolb.2021.746523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
After localized invasion by bacterial pathogens, systemic acquired resistance (SAR) is induced in uninfected plant tissues, resulting in enhanced defense against a broad range of pathogens. Although SAR requires mobilization of signaling molecules via the plant vasculature, the specific molecular mechanisms remain elusive. The lipid transfer protein defective in induced resistance 1 (DIR1) was identified in Arabidopsis thaliana by screening for mutants that were defective in SAR. Here, we demonstrate that stomatal response to pathogens is altered in systemic leaves by SAR, and this guard cell SAR defense requires DIR1. Using a multi-omics approach, we have determined potential SAR signaling mechanisms specific for guard cells in systemic leaves by profiling metabolite, lipid, and protein differences between guard cells in the wild type and dir1-1 mutant during SAR. We identified two long-chain 18 C and 22 C fatty acids and two 16 C wax esters as putative SAR-related molecules dependent on DIR1. Proteins and metabolites related to amino acid biosynthesis and response to stimulus were also changed in guard cells of dir1-1 compared to the wild type. Identification of guard cell-specific SAR-related molecules may lead to new avenues of genetic modification/molecular breeding for disease-resistant plants.
Collapse
Affiliation(s)
- Lisa David
- Department of Biology, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute (UFGI), Gainesville, FL, United States
| | - Jianing Kang
- Department of Biology, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute (UFGI), Gainesville, FL, United States.,College of Life Science, Northeast Agricultural University, Harbin, China
| | - Josh Nicklay
- Thermo Fisher Scientific, Somerset, NJ, United States
| | - Craig Dufresne
- Thermo Training Institute, Thermo Fisher Scientific, West Palm Beach, FL, United States
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute (UFGI), Gainesville, FL, United States.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States.,Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Plant Proteomic Research 4.0: Frontiers in Stress Resilience. Int J Mol Sci 2021; 22:ijms222413362. [PMID: 34948158 PMCID: PMC8708930 DOI: 10.3390/ijms222413362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
|
13
|
Liu X, Wu C, Su D, Yang Y, Xian Z, Yu C, Li Z, Hao Y, Chen R. The SlHB8 Acts as a Negative Regulator in Stem Development and Lignin Biosynthesis. Int J Mol Sci 2021; 22:13343. [PMID: 34948140 PMCID: PMC8708474 DOI: 10.3390/ijms222413343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
The stem is an important organ in supporting plant body, transporting nutrients and communicating signals for plant growing. However, studies on the regulation of stem development in tomato are rather limited. In our study, we demonstrated that SlHB8 negatively regulated tomato stem development. SlHB8 belongs to homeo domain-leucine zipper Class III gene family transcription factors and expressed in all the organs examined including root, stem, leaves, flower, and fruit. Among these tissues, SlHB8 showed stable high expression level during tomato stem development. Overexpression of SlHB8 gene decreased stem diameter with inhibited xylem width and xylem cell layers, while loss of function of SlHB8gene increased the stem diameter and xylem width. The contents of lignin were decreased both in leaves and stems of SlHB8 overexpression plants. RNA-seq analysis on the stems of wild type and SlHB8 transgenic plants showed that the 116 DEGs (differential expressed genes) with reversible expression profiles in SlHB8-ox and SlHB8-cr plants were significantly enriched in the phenylpropanoid biosynthesis pathway and plant-pathogen pathway which were related to lignin biosynthesis and disease resistance. Meanwhile, the key genes involved in the lignin biosynthesis pathway such as SlCCR (cinnamoyl-CoA reductase), SlCYP73A14/C4H (cinnamate 4-hydroxylase), SlC3H (coumarate 3-hydroxylase) and SlCAD (cinnamoyl alcohol dehydrogenase) were down-regulated in both stem and leaves of SlHB8 overexpression plants, indicating a negative regulatory role of SlHB8 in the lignin biosynthesis and stem development.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.L.); (C.W.); (Y.Y.); (C.Y.)
| | - Caiyu Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.L.); (C.W.); (Y.Y.); (C.Y.)
| | - Deding Su
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (D.S.); (Z.X.); (Z.L.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
| | - Yang Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.L.); (C.W.); (Y.Y.); (C.Y.)
| | - Zhiqiang Xian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (D.S.); (Z.X.); (Z.L.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
| | - Canye Yu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.L.); (C.W.); (Y.Y.); (C.Y.)
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (D.S.); (Z.X.); (Z.L.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
| | - Yanwei Hao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.L.); (C.W.); (Y.Y.); (C.Y.)
| | - Riyuan Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.L.); (C.W.); (Y.Y.); (C.Y.)
| |
Collapse
|
14
|
Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops. SUSTAINABILITY 2021. [DOI: 10.3390/su13052856] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review presents a comprehensive and systematic study of the field of bacterial plant biostimulants and considers the fundamental and innovative principles underlying this technology. Plant biostimulants are an important tool for modern agriculture as part of an integrated crop management (ICM) system, helping make agriculture more sustainable and resilient. Plant biostimulants contain substance(s) and/or microorganisms whose function when applied to plants or the rhizosphere is to stimulate natural processes to enhance plant nutrient uptake, nutrient use efficiency, tolerance to abiotic stress, biocontrol, and crop quality. The use of plant biostimulants has gained substantial and significant heed worldwide as an environmentally friendly alternative to sustainable agricultural production. At present, there is an increasing curiosity in industry and researchers about microbial biostimulants, especially bacterial plant biostimulants (BPBs), to improve crop growth and productivity. The BPBs that are based on PGPR (plant growth-promoting rhizobacteria) play plausible roles to promote/stimulate crop plant growth through several mechanisms that include (i) nutrient acquisition by nitrogen (N2) fixation and solubilization of insoluble minerals (P, K, Zn), organic acids and siderophores; (ii) antimicrobial metabolites and various lytic enzymes; (iii) the action of growth regulators and stress-responsive/induced phytohormones; (iv) ameliorating abiotic stress such as drought, high soil salinity, extreme temperatures, oxidative stress, and heavy metals by using different modes of action; and (v) plant defense induction modes. Presented here is a brief review emphasizing the applicability of BPBs as an innovative exertion to fulfill the current food crisis.
Collapse
|