1
|
Torices L, Nunes‐Xavier CE, Pulido R. Therapeutic Potential of Translational Readthrough at Disease-Associated Premature Termination Codons From Tumor Suppressor Genes. IUBMB Life 2025; 77:e70018. [PMID: 40317855 PMCID: PMC12046619 DOI: 10.1002/iub.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Tumor suppressor genes are frequently targeted by mutations introducing premature termination codons (PTC) in the protein coding sequence, both in sporadic cancers and in the germline of patients with cancer predisposition syndromes. These mutations have a high pathogenic impact since they generate C-terminal truncated proteins with altered stability and function. In addition, PTC mutations trigger transcript degradation by nonsense-mediated mRNA decay. Suppression of PTC by translational readthrough restores protein biosynthesis and stabilizes the PTC-targeted mRNA, making a suitable therapeutic approach the reconstitution of active full-length tumor suppressor proteins by pharmacologically-induced translational readthrough. Here, we review the recent advances in small molecule pharmacological induction of translational readthrough of disease-associated PTC from tumor suppressor genes, and discuss the therapeutic potential of translational readthrough in specific groups of patients with hereditary syndromic cancers.
Collapse
Affiliation(s)
| | - Caroline E. Nunes‐Xavier
- Biobizkaia Health Research InstituteBarakaldoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERERISCIIISpain
- Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Rafael Pulido
- Biobizkaia Health Research InstituteBarakaldoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERERISCIIISpain
- IkerbasqueThe Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
2
|
Michicich M, Traylor Z, McCoy C, Valerio DM, Wilson A, Schneider M, Davis S, Barabas A, Mann RJ, LePage DF, Jiang W, Drumm ML, Kelley TJ, Conlon RA, Hodges CA. A W1282X cystic fibrosis mouse allows the study of pharmacological and gene-editing therapeutics to restore CFTR function. J Cyst Fibros 2025; 24:164-174. [PMID: 39532588 PMCID: PMC11788034 DOI: 10.1016/j.jcf.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND People with cystic fibrosis carrying two nonsense alleles lack CFTR-specific treatment. Growing evidence supports the hypothesis that nonsense mutation identity affects therapeutic response, calling for mutation-specific CF models. We describe a novel W1282X mouse model and compare it to an existing G542X mouse. METHODS The W1282X mouse was created using CRISPR/Cas9 to edit mouse Cftr. In this model, Cftr transcription was assessed using qRT-PCR and CFTR function was measured in the airway by nasal potential difference and in the intestine by short circuit current. Growth, survival, and intestinal motility were examined as well. Correction of W1282X CFTR was assessed pharmacologically and by gene-editing using a forskolin-induced swelling (FIS) assay in small intestine-derived organoids. RESULTS Homozygous W1282X mice demonstrate decreased Cftr mRNA, little to no CFTR function, and reduced survival, growth, and intestinal motility. W1282X organoids treated with various combinations of pharmacologic correctors display a significantly different amount of CFTR function than that of organoids from G542X mice. Successful gene editing of W1282X to wildtype sequence in intestinal organoids was achieved leading to restoration of CFTR function. CONCLUSIONS The W1282X mouse model recapitulates common human manifestations of CF similar to other CFTR null mice. Despite the similarities between the congenic W1282X and G542X models, they differ meaningfully in their response to identical pharmacological treatments. This heterogeneity highlights the importance of studying therapeutics across genotypes.
Collapse
Affiliation(s)
- Margaret Michicich
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Zachary Traylor
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Caitlan McCoy
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Dana M Valerio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Alma Wilson
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Molly Schneider
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Sakeena Davis
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Amanda Barabas
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Rachel J Mann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - David F LePage
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Weihong Jiang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Thomas J Kelley
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Ronald A Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Craig A Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States.
| |
Collapse
|
3
|
Fiduccia I, Corrao F, Zizzo MG, Perriera R, Genovese F, Vitale E, Ricci D, Melfi R, Tutone M, Pace A, Lentini L, Pibiri I. Promoting readthrough of nonsense mutations in CF mouse model: Biodistribution and efficacy of NV848 in rescuing CFTR protein expression. Mol Ther 2024; 32:4514-4523. [PMID: 39473179 PMCID: PMC11638873 DOI: 10.1016/j.ymthe.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/11/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Nonsense mutations, often resulting from single-nucleotide substitutions, produce mRNA harboring a premature termination codon (PTC), which causes the premature termination of protein synthesis. This produces truncated and non-functional proteins, which cause different genetic diseases, including cystic fibrosis (CF). This work aims to investigate the ability of NV848 (N-(5-methyl-1,2,4-oxadiazol-3-yl)acetamide), a translational readthrough-inducing drug (TRID), to rescue CF transmembrane conductance regulator (CFTR) protein expression in a murine model characterized by the G542X nonsense mutation in the CFTR gene. In vitro experiments assessed the drug's stability in human hepatic metabolism, and in vivo investigations on wild-type mice allowed us to clarify the distribution of the drug to the target organs. Moreover, its efficacy in recovering the CFTR protein after chronic treatment was assessed in G542X homozygous mice. Our results provide valuable insights into the biodistribution and therapeutic attributes of NV848, representing a promising therapeutic tool for enhanced clinical outcomes in individuals affected by CF with nonsense mutations.
Collapse
Affiliation(s)
- Ignazio Fiduccia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Federica Corrao
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Riccardo Perriera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy; Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy
| | - Francesco Genovese
- Department of Diagnostic Laboratory, U.O.C. of Pathological Anatomy, "G.F. Ingrassia" Hospital, ASP Palermo, Palermo, Italy
| | - Emanuele Vitale
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Davide Ricci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Raffaella Melfi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Marco Tutone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Laura Lentini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.
| |
Collapse
|
4
|
Ruan J, Yu X, Xu H, Cui W, Zhang K, Liu C, Sun W, Huang X, An L, Zhang Y. Suppressor tRNA in gene therapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2120-2131. [PMID: 38926247 DOI: 10.1007/s11427-024-2613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Suppressor tRNAs are engineered or naturally occurring transfer RNA molecules that have shown promise in gene therapy for diseases caused by nonsense mutations, which result in premature termination codons (PTCs) in coding sequence, leading to truncated, often nonfunctional proteins. Suppressor tRNAs can recognize and pair with these PTCs, allowing the ribosome to continue translation and produce a full-length protein. This review introduces the mechanism and development of suppressor tRNAs, compares suppressor tRNAs with other readthrough therapies, discusses their potential for clinical therapy, limitations, and obstacles. We also summarize the applications of suppressor tRNAs in both in vitro and in vivo, offering new insights into the research and treatment of nonsense mutation diseases.
Collapse
Affiliation(s)
- Jingjing Ruan
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Liangzhu Laboratory, Hangzhou, 310000, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Xiaoxiao Yu
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Huixia Xu
- Department of Thoracic and Cardiovascular Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Wenrui Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Kaiye Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chenyang Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Wenlong Sun
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lei An
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
| | - Yue Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Liangzhu Laboratory, Hangzhou, 310000, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China.
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
| |
Collapse
|
5
|
Wang J, Gao G, Wang D. Developing AAV-delivered nonsense suppressor tRNAs for neurological disorders. Neurotherapeutics 2024; 21:e00391. [PMID: 38959711 PMCID: PMC11269797 DOI: 10.1016/j.neurot.2024.e00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is a clinical stage therapeutic modality for neurological disorders. A common genetic defect in myriad monogenic neurological disorders is nonsense mutations that account for about 11% of all human pathogenic mutations. Stop codon readthrough by suppressor transfer RNA (sup-tRNA) has long been sought as a potential gene therapy approach to target nonsense mutations, but hindered by inefficient in vivo delivery. The rapid advances in AAV delivery technology have not only powered gene therapy development but also enabled in vivo preclinical assessment of a range of nucleic acid therapeutics, such as sup-tRNA. Compared with conventional AAV gene therapy that delivers a transgene to produce therapeutic proteins, AAV-delivered sup-tRNA has several advantages, such as small gene sizes and operating within the endogenous gene expression regulation, which are important considerations for treating some neurological disorders. This review will first examine sup-tRNA designs and delivery by AAV vectors. We will then analyze how AAV-delivered sup-tRNA can potentially address some neurological disorders that are challenging to conventional gene therapy, followed by discussing available mouse models of neurological diseases for in vivo preclinical testing. Potential challenges for AAV-delivered sup-tRNA to achieve therapeutic efficacy and safety will also be discussed.
Collapse
Affiliation(s)
- Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Morais P, Zhang R, Yu YT. Therapeutic Nonsense Suppression Modalities: From Small Molecules to Nucleic Acid-Based Approaches. Biomedicines 2024; 12:1284. [PMID: 38927491 PMCID: PMC11201248 DOI: 10.3390/biomedicines12061284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Nonsense mutations are genetic mutations that create premature termination codons (PTCs), leading to truncated, defective proteins in diseases such as cystic fibrosis, neurofibromatosis type 1, Dravet syndrome, Hurler syndrome, Beta thalassemia, inherited bone marrow failure syndromes, Duchenne muscular dystrophy, and even cancer. These mutations can also trigger a cellular surveillance mechanism known as nonsense-mediated mRNA decay (NMD) that degrades the PTC-containing mRNA. The activation of NMD can attenuate the consequences of truncated, defective, and potentially toxic proteins in the cell. Since approximately 20% of all single-point mutations are disease-causing nonsense mutations, it is not surprising that this field has received significant attention, resulting in a remarkable advancement in recent years. In fact, since our last review on this topic, new examples of nonsense suppression approaches have been reported, namely new ways of promoting the translational readthrough of PTCs or inhibiting the NMD pathway. With this review, we update the state-of-the-art technologies in nonsense suppression, focusing on novel modalities with therapeutic potential, such as small molecules (readthrough agents, NMD inhibitors, and molecular glue degraders); antisense oligonucleotides; tRNA suppressors; ADAR-mediated RNA editing; targeted pseudouridylation; and gene/base editing. While these various modalities have significantly advanced in their development stage since our last review, each has advantages (e.g., ease of delivery and specificity) and disadvantages (manufacturing complexity and off-target effect potential), which we discuss here.
Collapse
Affiliation(s)
- Pedro Morais
- Drug Metabolism and Pharmacokinetics, Research and Development, Bayer Pharmaceuticals, 42113 Wuppertal, Germany
| | - Rui Zhang
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Yi-Tao Yu
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| |
Collapse
|
7
|
Han X, Li D, Zhu Y, Schneider-Futschik EK. Recommended Tool Compounds for Modifying the Cystic Fibrosis Transmembrane Conductance Regulator Channel Variants. ACS Pharmacol Transl Sci 2024; 7:933-950. [PMID: 38633590 PMCID: PMC11019735 DOI: 10.1021/acsptsci.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder arising from variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to multiple organ system defects. CFTR tool compounds are molecules that can modify the activity of the CFTR channel. Especially, patients that are currently not able to benefit from approved CFTR modulators, such as patients with rare CFTR variants, benefit from further research in discovering novel tools to modulate CFTR. This Review explores the development and classification of CFTR tool compounds, including CFTR blockers (CFTRinh-172, GlyH-101), potentiators (VRT-532, Genistein), correctors (VRT-325, Corr-4a), and other approved and unapproved modulators, with detailed descriptions and discussions for each compound. The challenges and future directions in targeting rare variants and optimizing drug delivery, and the potential synergistic effects in combination therapies are outlined. CFTR modulation holds promise not only for CF treatment but also for generating CF models that contribute to CF research and potentially treating other diseases such as secretory diarrhea. Therefore, continued research on CFTR tool compounds is critical.
Collapse
Affiliation(s)
- XiaoXuan Han
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danni Li
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yimin Zhu
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Wimmer B, Friedrich A, Poeltner K, Edobor G, Mosshammer C, Temaj G, Rathner A, Karl T, Krauss J, von Hagen J, Gerner C, Breitenbach M, Hintner H, Bauer JW, Breitenbach-Koller H. En Route to Targeted Ribosome Editing to Replenish Skin Anchor Protein LAMB3 in Junctional Epidermolysis Bullosa. JID INNOVATIONS 2024; 4:100240. [PMID: 38282649 PMCID: PMC10810840 DOI: 10.1016/j.xjidi.2023.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 01/30/2024] Open
Abstract
Severe junctional epidermolysis bullosa is a rare genetic, postpartum lethal skin disease, predominantly caused by nonsense/premature termination codon (PTC) sequence variants in LAMB3 gene. LAMB3 encodes LAMB3, the β subunit of epidermal-dermal skin anchor laminin 332. Most translational reads of a PTC mRNA deliver truncated, nonfunctional proteins, whereas an endogenous PTC readthrough mechanism produces full-length protein at minimal and insufficient levels. Conventional translational readthrough-inducing drugs amplify endogenous PTC readthrough; however, translational readthrough-inducing drugs are either proteotoxic or nonselective. Ribosome editing is a more selective and less toxic strategy. This technique identified ribosomal protein L35/uL29 (ie, RpL35) and RpL35-ligands repurposable drugs artesunate and atazanavir as molecular tools to increase production levels of full-length LAMB3. To evaluate ligand activity in living cells, we monitored artesunate and atazanavir treatment by dual luciferase reporter assays. Production levels of full-length LAMB3 increased up to 200% upon artesunate treatment, up to 150% upon atazanavir treatment, and up to 170% upon combinatorial treatment of RpL35 ligands at reduced drug dosage, with an unrelated PTC reporter being nonresponsive. Proof of bioactivity of RpL35 ligands in selective increase of full-length LAMB3 provides the basis for an alternative, targeted therapeutic route to replenish LAMB3 in severe junctional epidermolysis bullosa.
Collapse
Affiliation(s)
- Bjoern Wimmer
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Andreas Friedrich
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Katharina Poeltner
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Genevieve Edobor
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Claudia Mosshammer
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | - Adriana Rathner
- Institute of Biochemistry, Johannes Kepler University of Linz, Linz, Austria
| | - Thomas Karl
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Jan Krauss
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- SKM-IP PartGmbB, Munich, Germany
| | - Joerg von Hagen
- Merck KGaA, Gernsheim, Germany
- ryon-Greentech Accelerator, Gernsheim, Germany
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Vienna, Austria
| | - Michael Breitenbach
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Helmut Hintner
- Department of Dermatology and Allergology, University Hospital Salzburg, Salzburg, Austria
| | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital Salzburg, Salzburg, Austria
| | | |
Collapse
|
9
|
Osum SH, Oribamise EI, Corbière SM, Taisto M, Jubenville T, Coutts A, Kirstein MN, Fisher J, Moertel C, Du M, Bedwell D, Largaespada DA, Watson AL. Combining nonsense mutation suppression therapy with nonsense-mediated decay inhibition in neurofibromatosis type 1. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:227-239. [PMID: 37520682 PMCID: PMC10384610 DOI: 10.1016/j.omtn.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Neurofibromatosis type 1 (NF1) results from germline mutations in the tumor-suppressor gene NF1 and predisposes patients to developing nervous system tumors. Twenty percent of NF1 patients harbor nonsense mutations resulting in premature termination codons (PTCs). Nonsense suppression therapies can facilitate ribosomal readthrough of PTCs to restore full-length protein, but their potential in NF1 is underexplored. We developed a minipig model of NF1 carrying a PTC to test whether nonsense suppression could restore expression of the NF1-encoded protein neurofibromin in vitro and in vivo. Nonsense suppression did not reliably increase neurofibromin in primary NF1-/- Schwann cells isolated from minipig neurofibromas but could reduce phosphorylated ERK. Gentamicin in vivo produced a similar plasma pharmacokinetic profile to humans and was detectable in clinically relevant tissues, including cerebral cortex, sciatic nerve, optic nerve, and skin. In gentamicin-treated animals, increased neurofibromin expression was seen in the optic nerve. Nonsense-mediated decay (NMD) causes degradation of transcripts with PTCs, which could impede nonsense suppression therapies. Nonsense suppression in combination with NMD inhibition restored neurofibromin protein expression in primary NF1-/- Schwann cells isolated from minipig neurofibromas. Thus, the effectiveness of nonsense suppression therapies can be improved in NF1 by the concurrent use of NMD inhibitors.
Collapse
Affiliation(s)
- Sara H. Osum
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, 2-191 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Eunice I. Oribamise
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, 2-191 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | - Mandy Taisto
- Recombinetics Inc., 3388 Mike Collins Drive, #1, Eagan, MN 55121, USA
| | - Tyler Jubenville
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, 2-191 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Alex Coutts
- Recombinetics Inc., 3388 Mike Collins Drive, #1, Eagan, MN 55121, USA
| | - Mark N. Kirstein
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, 2-191 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Room 459, 717 Delaware Street SE, Minneapolis, MN 55414, USA
| | - James Fisher
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Room 459, 717 Delaware Street SE, Minneapolis, MN 55414, USA
| | - Christopher Moertel
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, 2-191 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Ming Du
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Bevill Biomedical Research Building Room 432A, 845 19 Street South, Birmingham, AL 35294, USA
| | - David Bedwell
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Bevill Biomedical Research Building Room 432A, 845 19 Street South, Birmingham, AL 35294, USA
| | - David A. Largaespada
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, 2-191 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
10
|
Wong KM, Wegener E, Baradaran-Heravi A, Huppke B, Gärtner J, Huppke P. Evaluation of Novel Enhancer Compounds in Gentamicin-Mediated Readthrough of Nonsense Mutations in Rett Syndrome. Int J Mol Sci 2023; 24:11665. [PMID: 37511424 PMCID: PMC10380790 DOI: 10.3390/ijms241411665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Rett syndrome (RTT), a severe X-linked neurodevelopmental disorder, is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). Over 35% RTT patients carry nonsense mutation in MECP2, making it a suitable candidate disease for nonsense suppression therapy. In our previous study, gentamicin was found to induce readthrough of MECP2 nonsense mutations with modest efficiency. Given the recent discovery of readthrough enhancers, CDX compounds, we herein evaluated the potentiation effect of CDX5-1, CDX5-288, and CDX6-180 on gentamicin-mediated readthrough efficiency in transfected HeLa cell lines bearing the four most common MECP2 nonsense mutations. We showed that all three CDX compounds potentiated gentamicin-mediated readthrough and increased full-length MeCP2 protein levels in cells expressing the R168X, R255X, R270X, and R294X nonsense mutations. Among all three CDX compounds, CDX5-288 was the most potent enhancer and enabled the use of reduced doses of gentamicin, thus mitigating the toxicity. Furthermore, we successfully demonstrated the upregulation of full-length Mecp2 protein expression in fibroblasts derived from Mecp2R255X/Y mice through combinatorial treatment. Taken together, findings demonstrate the feasibility of this combinatorial approach to nonsense suppression therapy for a subset of RTT patients.
Collapse
Affiliation(s)
- Keit Men Wong
- Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
- Center for Rare Diseases, Jena University Hospital, 07747 Jena, Germany
| | - Eike Wegener
- Department of Pediatrics and Adolescent Medicine, Division of Neuropediatrics, Pediatric Neurology University Medical Center Göttingen, Georg August University Göttingen, 37075 Göttingen, Germany
| | - Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | - Brenda Huppke
- Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
- Center for Rare Diseases, Jena University Hospital, 07747 Jena, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, Division of Neuropediatrics, Pediatric Neurology University Medical Center Göttingen, Georg August University Göttingen, 37075 Göttingen, Germany
| | - Peter Huppke
- Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
- Center for Rare Diseases, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
11
|
Spelier S, van Doorn EPM, van der Ent CK, Beekman JM, Koppens MAJ. Readthrough compounds for nonsense mutations: bridging the translational gap. Trends Mol Med 2023; 29:297-314. [PMID: 36828712 DOI: 10.1016/j.molmed.2023.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Approximately 10% of all pathological mutations are nonsense mutations that are responsible for several severe genetic diseases for which no treatment regimens are currently available. The most widespread strategy for treating nonsense mutations is by enhancing ribosomal readthrough of premature termination codons (PTCs) to restore the production of the full-length protein. In the past decade several compounds with readthrough potential have been identified. However, although preclinical results on these compounds are promising, clinical studies have not yielded positive outcomes. We review preclinical and clinical research related to readthrough compounds and characterize factors that contribute to the observed translational gap.
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Eveline P M van Doorn
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Martijn A J Koppens
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Esposito R, Mirra D, Spaziano G, Panico F, Gallelli L, D’Agostino B. The Role of MMPs in the Era of CFTR Modulators: An Additional Target for Cystic Fibrosis Patients? Biomolecules 2023; 13:350. [PMID: 36830719 PMCID: PMC9952876 DOI: 10.3390/biom13020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Cystic fibrosis (CF) is a high-prevalence disease characterized by significant lung remodeling, responsible for high morbidity and mortality worldwide. The lung structural changes are partly due to proteolytic activity associated with inflammatory cells such as neutrophils and macrophages. Matrix metalloproteases (MMPs) are the major proteases involved in CF, and recent literature data focused on their potential role in the pathogenesis of the disease. In fact, an imbalance of proteases and antiproteases was observed in CF patients, resulting in dysfunction of protease activity and loss of lung homeostasis. Currently, many steps forward have been moved in the field of pharmacological treatment with the recent introduction of triple-combination therapy targeting the CFTR channel. Despite CFTR modulator therapy potentially being effective in up to 90% of patients with CF, there are still patients who are not eligible for the available therapies. Here, we introduce experimental drugs to provide updates on therapy evolution regarding a proportion of CF non-responder patients to current treatment, and we summarize the role of MMPs in pathogenesis and as future therapeutic targets of CF.
Collapse
Affiliation(s)
- Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Francesca Panico
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Luca Gallelli
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| |
Collapse
|
13
|
Wu MH, Lu RY, Yu SJ, Tsai YZ, Lin YC, Bai ZY, Liao RY, Hsu YC, Chen CC, Cai BH. PTC124 Rescues Nonsense Mutation of Two Tumor Suppressor Genes NOTCH1 and FAT1 to Repress HNSCC Cell Proliferation. Biomedicines 2022; 10:biomedicines10112948. [PMID: 36428516 PMCID: PMC9687978 DOI: 10.3390/biomedicines10112948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
(1) Background: PTC124 (Ataluren) is an investigational drug for the treatment of nonsense mutation-mediated genetic diseases. With the exception of the TP53 tumor suppressor gene, there has been little research on cancers with nonsense mutation. By conducting a database search, we found that another two tumor suppressor genes, NOTCH1 and FAT1, have a high nonsense mutation rate in head and neck squamous cell carcinoma (HNSCC). PTC124 may re-express the functional NOTCH1 or FAT1 in nonsense mutation NOTCH1 or FAT1 in HSNCC (2) Methods: DOK (with NOTCH1 Y550X) or HO-1-u-1 (with FAT1 E378X) HNSCC cells were treated with PTC124, and the NOTCH1 or FAT1 expression, cell viability, and NOTCH1- or FAT1-related downstream gene profiles were assayed. (3) Results: PTC124 was able to induce NOTCH1 or FAT1 expression in DOK and HO-1-u-1 cells. PTC124 was able to upregulate NOTCH downstream genes HES5, AJUBA, and ADAM10 in DOK cells. PTC124 enhanced DDIT4, which is under the control of the FAT1-YAP1 pathway, in HO-1-u-1 cells. FLI-06 (a NOTCH signaling inhibitor) reversed PTC124-mediated cell growth inhibition in DOK cells. PTC124 could reverse TT-10 (a YAP signaling activator)-mediated HO-1-u-1 cell proliferation. (4) Conclusions: PTC124 can rescue nonsense mutation of NOTCH1 and FAT1 to repress HNSCC cell proliferation.
Collapse
Affiliation(s)
- Ming-Han Wu
- School of Medicine, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Rui-Yu Lu
- Department of Medical Laboratory Science, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Si-Jie Yu
- Department of Medical Laboratory Science, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Yi-Zhen Tsai
- Department of Medical Laboratory Science, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Ying-Chen Lin
- Department of Medical Laboratory Science, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Zhi-Yu Bai
- Department of Medical Laboratory Science, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Ruo-Yu Liao
- Department of Medical Laboratory Science, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
| | - Yi-Chiang Hsu
- School of Medicine, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
- Correspondence: (Y.-C.H.); (C.-C.C.); (B.-H.C.)
| | - Chia-Chi Chen
- Department of Pathology, E-Da Hospital, No.1, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
- College of Medicine, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
- Correspondence: (Y.-C.H.); (C.-C.C.); (B.-H.C.)
| | - Bi-He Cai
- School of Medicine, I-Shou University, No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City 82445, Taiwan
- Correspondence: (Y.-C.H.); (C.-C.C.); (B.-H.C.)
| |
Collapse
|
14
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
15
|
Yu J, Tang B, He X, Zou P, Zeng Z, Xiao R. Nonsense Suppression Therapy: An Emerging Treatment for Hereditary Skin Diseases. Acta Derm Venereol 2022; 102:adv00658. [DOI: 10.2340/actadv.v102.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nonsense mutations cause the premature termination of protein translation via premature termination codons (PTCs), leading to the synthesis of incomplete functional proteins and causing large numbers of genetic disorders. The emergence of nonsense suppression therapy is considered to be an effective method for the treatment of hereditary diseases, but its application in hereditary skin diseases is relatively limited. This review summarizes the current research status of nonsense suppression therapy for hereditary skin diseases, and discusses the potential opportunities and challenges of applying new technologies related to nonsense suppression therapy to dermatology. Further research is needed into the possible use of nonsense suppression therapy as a strategy for the safer and specific treatment of hereditary skin diseases.
Collapse
|
16
|
Integrity and Stability of PTC Bearing CFTR mRNA and Relevance to Future Modulator Therapies in Cystic Fibrosis. Genes (Basel) 2021; 12:genes12111810. [PMID: 34828417 PMCID: PMC8621375 DOI: 10.3390/genes12111810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Major advances have recently been made in the development and application of CFTR (cystic fibrosis transmembrane conductance regulator) mutation class-specific modulator therapies, but to date, there are no approved modulators for Class I mutations, i.e., those introducing a premature termination codon (PTC) into the CFTR mRNA. Such mutations induce nonsense-mediated decay (NMD), a cellular quality control mechanism that reduces the quantity of PTC bearing mRNAs, presumably to avoid translation of potentially deleterious truncated CFTR proteins. The NMD-mediated reduction of PTC-CFTR mRNA molecules reduces the efficacy of one of the most promising approaches to treatment of such mutations, namely, PTC readthrough therapy, using molecules that induce the incorporation of near-cognate amino acids at the PTC codon, thereby enabling translation of a full-length protein. In this study, we measure the effect of three different PTC mutations on the abundance, integrity, and stability of respective CFTR mRNAs, using CFTR specific RT-qPCR-based assays. Altogether, our data suggest that optimized rescue of PTC mutations has to take into account (1) the different steady-state levels of the CFTR mRNA associated with each specific PTC mutation; (2) differences in abundance between the 3' and 5' regions of CFTR mRNA, even following PTC readthrough or NMD inhibition; and (3) variable effects on CFTR mRNA stability for each specific PTC mutation.
Collapse
|
17
|
Comprehensive Analysis of Combinatorial Pharmacological Treatments to Correct Nonsense Mutations in the CFTR Gene. Int J Mol Sci 2021; 22:ijms222111972. [PMID: 34769402 PMCID: PMC8584557 DOI: 10.3390/ijms222111972] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is caused by loss of function of the CFTR chloride channel. A substantial number of CF patients carry nonsense mutations in the CFTR gene. These patients cannot directly benefit from pharmacological correctors and potentiators that have been developed for other types of CFTR mutations. We evaluated the efficacy of combinations of drugs targeting at various levels the effects of nonsense mutations: SMG1i to protect CFTR mRNA from nonsense-mediated decay (NMD), G418 and ELX-02 for readthrough, VX-809 and VX-445 to promote protein maturation and function, PTI-428 to enhance CFTR protein synthesis. We found that the extent of rescue and sensitivity to the various agents is largely dependent on the type of mutation, with W1282X and R553X being the mutations most and least sensitive to pharmacological treatments, respectively. In particular, W1282X-CFTR was highly responsive to NMD suppression by SMG1i but also required treatment with VX-445 corrector to show function. In contrast, G542X-CFTR required treatment with readthrough agents and VX-809. Importantly, we never found cooperativity between the NMD inhibitor and readthrough compounds. Our results indicate that treatment of CF patients with nonsense mutations requires a precision medicine approach with the design of specific drug combinations for each mutation.
Collapse
|
18
|
Molecular Approaches Fighting Nonsense. Int J Mol Sci 2021; 22:ijms222111933. [PMID: 34769359 PMCID: PMC8584650 DOI: 10.3390/ijms222111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Nonsense mutations are the result of single nucleotide substitutions in the DNA that change a sense codon (coding for an amino acid) to a nonsense or premature termination codon (PTC) within the coding region of the mRNA [...].
Collapse
|
19
|
Viotti Perisse I, Fan Z, Van Wettere A, Liu Y, Leir S, Keim J, Regouski M, Wilson MD, Cholewa KM, Mansbach SN, Kelley TJ, Wang Z, Harris A, White KL, Polejaeva IA. Sheep models of F508del and G542X cystic fibrosis mutations show cellular responses to human therapeutics. FASEB Bioadv 2021; 3:841-854. [PMID: 34632318 PMCID: PMC8493969 DOI: 10.1096/fba.2021-00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023] Open
Abstract
Cystic Fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The F508del and G542X are the most common mutations found in US patients, accounting for 86.4% and 4.6% of all mutations, respectively. The F508del causes deletion of the phenylalanine residue at position 508 and is associated with impaired CFTR protein folding. The G542X is a nonsense mutation that introduces a stop codon into the mRNA, thus preventing normal CFTR protein synthesis. Here, we describe the generation of CFTRF508del / F508del and CFTRG542X / G542X lambs using CRISPR/Cas9 and somatic cell nuclear transfer (SCNT). First, we introduced either F508del or G542X mutations into sheep fetal fibroblasts that were subsequently used as nuclear donors for SCNT. The newborn CF lambs develop pathology similar to CFTR -/- sheep and CF patients. Moreover, tracheal epithelial cells from the CFTRF508del / F508del lambs responded to a human CFTR (hCFTR) potentiator and correctors, and those from CFTRG542X / G542X lambs showed modest restoration of CFTR function following inhibition of nonsense-mediated decay (NMD) and aminoglycoside antibiotic treatments. Thus, the phenotype and electrophysiology of these novel models represent an important advance for testing new CF therapeutics and gene therapy to improve the health of patients with this life-limiting disorder.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Arnaud Van Wettere
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Ying Liu
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Shih‐Hsing Leir
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Jacob Keim
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Michael D. Wilson
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Kelly M. Cholewa
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Sara N. Mansbach
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Thomas J. Kelley
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Ann Harris
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| |
Collapse
|
20
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|