1
|
Li M, Liu X, Li J, Guo H, Xue S, Zhu L, Ma C, Chen D, Wang H, Cai Y, Shen J. Brain glycogen: A key to revealing the pathology of mental diseases. Brain Res 2024; 1844:149194. [PMID: 39182899 DOI: 10.1016/j.brainres.2024.149194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Brain glycogen, which is distinct from muscle glycogen and liver glycogen, has become a crucial node linking metabolism, epigenetics, and autophagy. Recent studies have suggested that brain glycogen governs multiple neurobehavioral processes, such as memory formation and consolidation. However, the changes in brain glycogen levels in mental diseases and the associations of these changes with the disease prognosis are unknown. Here, we review the psychological functions of brain glycogen and the different characteristics of astrocytic glycogen and neuronal glycogen. In addition, we summarize the alterations in brain glycogen levels in depression, schizophrenia and sleep disorders, highlighting that brain glycogen functions as an important metabolite responsible for the development of mental diseases. In summary, brain glycogen is a key to understanding the pathology of mental diseases and deserves more attention in future research.
Collapse
Affiliation(s)
- Mingyu Li
- Graduate School, Xi׳an Medical University, Xi'an, Shaanxi, China
| | - Xiaohui Liu
- Department of Psychiatry, Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jing Li
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shanshan Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lei Zhu
- Graduate School, Xi׳an Medical University, Xi'an, Shaanxi, China
| | - Cuicui Ma
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dongyu Chen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yanhui Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jiangpei Shen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Hendry E, McCallister B, Elman DJ, Freeman R, Borsook D, Elman I. Validity of mental and physical stress models. Neurosci Biobehav Rev 2024; 158:105566. [PMID: 38307304 PMCID: PMC11082879 DOI: 10.1016/j.neubiorev.2024.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Different stress models are employed to enhance our understanding of the underlying mechanisms and explore potential interventions. However, the utility of these models remains a critical concern, as their validities may be limited by the complexity of stress processes. Literature review revealed that both mental and physical stress models possess reasonable construct and criterion validities, respectively reflected in psychometrically assessed stress ratings and in activation of the sympathoadrenal system and the hypothalamic-pituitary-adrenal axis. The findings are less robust, though, in the pharmacological perturbations' domain, including such agents as adenosine or dobutamine. Likewise, stress models' convergent- and discriminant validity vary depending on the stressors' nature. Stress models share similarities, but also have important differences regarding their validities. Specific traits defined by the nature of the stressor stimulus should be taken into consideration when selecting stress models. Doing so can personalize prevention and treatment of stress-related antecedents, its acute processing, and chronic sequelae. Further work is warranted to refine stress models' validity and customize them so they commensurate diverse populations and circumstances.
Collapse
Affiliation(s)
- Erin Hendry
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brady McCallister
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA
| | - Dan J Elman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Department of Anesthesiology, Harvard Medical School, Boston, MA, USA.
| | - Igor Elman
- Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
3
|
Sex-Dimorphic Glucocorticoid Receptor Regulation of Hypothalamic Primary Astrocyte Glycogen Metabolism: Interaction with Norepinephrine. NEUROGLIA (BASEL, SWITZERLAND) 2022; 3:144-157. [PMID: 36685006 PMCID: PMC9850496 DOI: 10.3390/neuroglia3040010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Astrocyte glycogen is a critical metabolic variable that impacts hypothalamic control of glucostasis. Glucocorticoid hormones regulate peripheral glycogen, but their effects on hypothalamic glycogen are not known. A hypothalamic astrocyte primary culture model was used to investigate the premise that glucocorticoids impose sex-dimorphic independent and interactive control of glycogen metabolic enzyme protein expression and glycogen accumulation. The glucocorticoid receptor (GR) agonist dexamethasone (DEX) down-regulated glycogen synthase (GS), glycogen phosphorylase (GP)-brain type (GPbb), and GP-muscle type (GPmm) proteins in glucose-supplied male astrocytes, but enhanced these profiles in female. The catecholamine neurotransmitter norepinephrine (NE) did not alter these proteins, but amplified DEX inhibition of GS and GPbb in male or abolished GR stimulation of GPmm in female. In both sexes, DEX and NE individually increased glycogen content, but DEX attenuated the magnitude of noradrenergic stimulation. Glucoprivation suppressed GS, GPbb, and GPmm in male, but not female astrocytes, and elevated or diminished glycogen in these sexes, respectively. Glucose-deprived astrocytes exhibit GR-dependent induced glycogen accumulation in both sexes, and corresponding loss (male) or attenuation (female) of noradrenergic-dependent glycogen build-up. Current evidence for GR augmentation of hypothalamic astrocyte glycogen content in each sex, yet divergent effects on glycogen enzyme proteins infers that glucocorticoids may elicit opposite adjustments in glycogen turnover in each sex. Results document GR modulation of NE stimulation of glycogen accumulation in the presence (male and female) or absence (female) of glucose. Outcomes provide novel proof that astrocyte energy status influences the magnitude of GR and NE signal effects on glycogen mass.
Collapse
|
4
|
Alhamyani A, Napit PR, Bheemanapally K, Sylvester PW, Briski KP. Singular versus combinatory glucose-sensitive signal control of metabolic sensor protein profiles in hypothalamic astrocyte cultures from each sex. Transl Neurosci 2022; 13:408-420. [PMID: 36518559 PMCID: PMC9719392 DOI: 10.1515/tnsci-2022-0259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 01/05/2025] Open
Abstract
Brain metabolic-sensory targets for modulatory glucose-sensitive endocrine and neurochemical signals remain unidentified. A hypothalamic astrocyte primary culture model was here used to investigate whether glucocorticoid receptor (GR) and noradrenergic signals regulate astrocyte glucose (glucose transporter-2 [GLUT2], glucokinase) and/or energy (5'-AMP-activated protein kinase [AMPK]) sensor reactivity to glucoprivation by sex. Glucose-supplied astrocytes of each sex showed increased GLUT2 expression after incubation with the GR agonist dexamethasone (DEX) or norepinephrine (NE); DEX plus NE (DEX/NE) augmented GLUT2 in the female, but not in male. Glucoprivation did not alter GLUT2 expression, but eliminated NE regulation of this protein in both sexes. Male and female astrocyte glucokinase profiles were refractory to all drug treatments, but were down-regulated by glucoprivation. Glucoprivation altered AMPK expression in male only, and caused divergent sex-specific changes in activated, i.e., phosphoAMPK (pAMPK) levels. DEX or DEX/NE inhibited (male) or stimulated (female) AMPK and pAMPK proteins in both glucose-supplied and -deprived astrocytes. In male, NE coincidently up-regulated AMPK and inhibited pAMPK profiles in glucose-supplied astrocytes; these effects were abolished by glucoprivation. In female, AMPK profiles were unaffected by NE irrespective of glucose status, whereas pAMPK expression was up-regulated by NE only during glucoprivation. Present outcomes document, for each sex, effects of glucose status on hypothalamic astrocyte glucokinase, AMPK, and pAMPK protein expression and on noradrenergic control of these profiles. Data also show that DEX and NE regulation of GLUT2 is sex-monomorphic, but both stimuli impose divergent sex-specific effects on AMPK and pAMPK. Further effort is warranted to characterize mechanisms responsible for sex-dimorphic GR and noradrenergic governance of hypothalamic astrocyte energy sensory function.
Collapse
Affiliation(s)
- Abdulrahman Alhamyani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, United States; Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha city, 65779, Saudi Arabia
| | - Prabhat R. Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, United States; Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha city, 65779, Saudi Arabia
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, United States; Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha city, 65779, Saudi Arabia
| | - Paul W. Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, United States; Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha city, 65779, Saudi Arabia
| | - Karen P. Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, United States; Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha city, 65779, Saudi Arabia
| |
Collapse
|
5
|
Uddin MM, Ibrahim MMH, Briski KP. Glycogen Phosphorylase Isoform Regulation of Ventromedial Hypothalamic Nucleus Gluco-Regulatory Neuron 5'-AMP-Activated Protein Kinase and Transmitter Marker Protein Expression. ASN Neuro 2021; 13:17590914211035020. [PMID: 34596459 PMCID: PMC8495507 DOI: 10.1177/17590914211035020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Brain glycogen is remodeled during metabolic homeostasis and provides oxidizable
L-lactate equivalents. Brain glycogen phosphorylase (GP)-brain (GPbb;
AMP-sensitive) and -muscle (GPmm; norepinephrine-sensitive) type isoforms
facilitate stimulus-specific control of glycogen disassembly. Here, a whole
animal model involving stereotactic-targeted delivery of GPmm or GPbb siRNA to
the ventromedial hypothalamic nucleus (VMN) was used to investigate the premise
that these variants impose differential control of gluco-regulatory
transmission. Intra-VMN GPmm or GPbb siRNA administration inhibited glutamate
decarboxylate65/67 (GAD), a protein marker for the
gluco-inhibitory transmitter γ--aminobutyric acid (GABA), in the caudal VMN.
GPbb knockdown, respectively overturned or exacerbated hypoglycemia-associated
GAD suppression in rostral and caudal VMN. GPmm siRNA caused a segment-specific
reversal of hypoglycemic augmentation of the gluco-stimulatory transmitter
indicator, neuronal nitric oxide synthase (nNOS). In both cell types, GP siRNA
down-regulated 5′-AMP-activated protein kinase (AMPK) during euglycemia, but
hypoglycemic suppression of AMPK was reversed by GPmm targeting. GP knockdown
elevated baseline GABA neuron phosphoAMPK (pAMKP) content, and amplified
hypoglycemic augmentation of pAMPK expression in each neuron type. GPbb
knockdown increased corticosterone secretion in eu- and hypoglycemic rats.
Outcomes validate efficacy of GP siRNA delivery for manipulation of glycogen
breakdown in discrete brain structures in vivo, and document VMN GPbb control of
local GPmm expression. Results document GPmm and/or -bb regulation of GABAergic
and nitrergic transmission in discrete rostro-caudal VMN segments. Contrary
effects of glycogenolysis on metabolic-sensory AMPK protein during eu- versus
hypoglycemia may reflect energy state-specific astrocyte signaling. Amplifying
effects of GPbb knockdown on hypoglycemic stimulation of pAMPK infer that
glycogen mobilization by GPbb limits neuronal energy instability during
hypoglycemia.
Collapse
Affiliation(s)
- Md Main Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, 15512University of Louisiana Monroe, Monroe, LA, USA
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, 15512University of Louisiana Monroe, Monroe, LA, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, 15512University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
6
|
Alhamyani A, Napit PR, Ali H, Ibrahim MMH, Briski KP. Ventrolateral ventromedial hypothalamic nucleus GABA neuron adaptation to recurring Hypoglycemia correlates with up-regulated 5'-AMP-activated protein kinase activity. AIMS Neurosci 2021; 8:510-525. [PMID: 34877402 PMCID: PMC8611193 DOI: 10.3934/neuroscience.2021027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) acts on ventromedial hypothalamic targets to suppress counter-regulatory hormone release, thereby lowering blood glucose. Maladaptive up-regulation of GABA signaling is implicated in impaired counter-regulatory outflow during recurring insulin-induced hypoglycemia (RIIH). Ventromedial hypothalamic nucleus (VMN) GABAergic neurons express the sensitive energy gauge 5'-AMP-activated protein kinase (AMPK). Current research used high-neuroanatomical resolution single-cell microdissection tools to address the premise that GABAergic cells in the VMNvl, the primary location of 'glucose-excited' metabolic-sensory neurons in the VMN, exhibit attenuated sensor activation during RIIH. Data show that during acute hypoglycemia, VMNvl glutamate decarboxylase65/67 (GAD)-immunoreactive neurons maintain energy stability, yet a regional subset of this population exhibited decreased GAD content. GABA neurons located along the rostrocaudal length of the VMNvl acclimated to RIIH through a shift to negative energy imbalance, e.g. increased phosphoAMPK expression, alongside amplification/gain of inhibition of GAD profiles. Acquisition of negative GAD sensitivity may involve altered cellular receptivity to noradrenergic input via α2-AR and/or β1-AR. Suppression of VMNvl GABA nerve cell signaling during RIIH may differentiate this neuroanatomical population from other, possibly non-metabolic-sensory GABA neurons in the MBH. Data here also provide novel evidence that VMNvl GABA neurons are direct targets of glucocorticoid control, and show that glucocorticoid receptors may inhibit RIIH-associated GAD expression in rostral VMNvl GABAergic cells through AMPK-independent mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
7
|
Migocka-Patrzałek M, Elias M. Muscle Glycogen Phosphorylase and Its Functional Partners in Health and Disease. Cells 2021; 10:cells10040883. [PMID: 33924466 PMCID: PMC8070155 DOI: 10.3390/cells10040883] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glycogen phosphorylase (PG) is a key enzyme taking part in the first step of glycogenolysis. Muscle glycogen phosphorylase (PYGM) differs from other PG isoforms in expression pattern and biochemical properties. The main role of PYGM is providing sufficient energy for muscle contraction. However, it is expressed in tissues other than muscle, such as the brain, lymphoid tissues, and blood. PYGM is important not only in glycogen metabolism, but also in such diverse processes as the insulin and glucagon signaling pathway, insulin resistance, necroptosis, immune response, and phototransduction. PYGM is implicated in several pathological states, such as muscle glycogen phosphorylase deficiency (McArdle disease), schizophrenia, and cancer. Here we attempt to analyze the available data regarding the protein partners of PYGM to shed light on its possible interactions and functions. We also underline the potential for zebrafish to become a convenient and applicable model to study PYGM functions, especially because of its unique features that can complement data obtained from other approaches.
Collapse
|
8
|
Bheemanapally K, Alhamyani A, Alshamrani AA, Napit PR, Ali MH, Uddin MM, Mahmood A, Ibrahim MM, Briski KP. Hypoglycemic and post‑hypoglycemic patterns of glycogen phosphorylase isoform expression in the ventrolateral ventromedial hypothalamic nucleus: impact of sex and estradiol. Acta Neurobiol Exp (Wars) 2021; 81:196-206. [PMID: 34170267 PMCID: PMC8244535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glycogen metabolism shapes ventromedial hypothalamic nucleus (VMN) control of glucose homeostasis. Brain glycogen mass undergoes compensatory expansion post‑recovery from insulin‑induced hypoglycemia (IIH). Current research utilized combinatory high‑resolution microdissection/high‑sensitivity Western blotting to investigate whether IIH causes residual adjustments in glycogen metabolism within the metabolic‑sensory ventrolateral VMN (VMNvl). Micropunch‑dissected tissue was collected from rostral, middle, and caudal levels of the VMNvl in each sex for analysis of glycogen synthase (GS) and glycogen phosphorylase (GP)‑muscle type (GPmm; norepinephrine‑sensitive) and GP‑brain type (GPbb; glucoprivic‑sensitive) isoform expression during and after IIH. Hypoglycemic suppression of VMNvl GS levels in males disappeared or continued after reestablishment of euglycemia, according to sampled segment. Yet, reductions in female VMNvl GS persisted after IIH. Males exhibited reductions in GPmm content in select rostro‑caudal VMNvl segments, but this protein declined in each segment post‑hypoglycemia. Females, rather, showed augmented or diminished GPmm levels during IIH, but no residual effects of IIH on this protein. In each sex, region‑specific up‑ or down‑regulation of VMNvl GPbb profiles during glucose decrements were undetected post‑recovery from IIH. Results provide novel proof of estradiol‑dependent sex‑dimorphic patterns of VMNvl GP variant expression at specific rostro‑caudal levels of this critical gluco‑regulatory structure. Sex differences in persistence of IIH‑associated GS and GPmm patterns of expression after restoration of euglycemia infer that VMNvl recovery from this metabolic stress may involve dissimilar glycogen accumulation in male versus female.
Collapse
Affiliation(s)
- Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, USA
| | - Abdulrahman Alhamyani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, USA
| | - Ayed A Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, USA
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, USA
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, USA
| | - Md Main Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, USA
| | - Asmh Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, USA
| | - Mostafa Mh Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, USA;
| |
Collapse
|