1
|
Benedusi M, Lee H, Lim Y, Valacchi G. Oxidative State in Cutaneous Melanoma Progression: A Question of Balance. Antioxidants (Basel) 2024; 13:1058. [PMID: 39334716 PMCID: PMC11428248 DOI: 10.3390/antiox13091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are highly bioactive molecules involved not only in tissue physiology but also in the development of different human conditions, including premature aging, cardiovascular pathologies, neurological and neurodegenerative disorders, inflammatory diseases, and cancer. Among the different human tumors, cutaneous melanoma, the most aggressive and lethal form of skin cancer, is undoubtedly one of the most well-known "ROS-driven tumor", of which one of the main causes is represented by ultraviolet (UV) rays' exposure. Although the role of excessive ROS production in melanoma development in pro-tumorigenic cell fate is now well established, little is known about its contribution to the progression of the melanoma metastatic process. Increasing evidence suggests a dual role of ROS in melanoma progression: excessive ROS production may enhance cellular growth and promote therapeutic resistance, but at the same time, it can also have cytotoxic effects on cancer cells, inducing their apoptosis. In this context, the aim of the present work was to focus on the relationship between cell redox state and the signaling pathways directly involved in the metastatic processes. In addition, oxidative or antioxidant therapeutic strategies for metastatic melanoma were also reviewed and discussed.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Song S, Wang L, Hou L, Liu JS. Partitioning and aggregating cross-tissue and tissue-specific genetic effects to identify gene-trait associations. Nat Commun 2024; 15:5769. [PMID: 38982044 PMCID: PMC11233643 DOI: 10.1038/s41467-024-49924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
TWAS have shown great promise in extending GWAS loci to a functional understanding of disease mechanisms. In an effort to fully unleash the TWAS and GWAS information, we propose MTWAS, a statistical framework that partitions and aggregates cross-tissue and tissue-specific genetic effects in identifying gene-trait associations. We introduce a non-parametric imputation strategy to augment the inaccessible tissues, accommodating complex interactions and non-linear expression data structures across various tissues. We further classify eQTLs into cross-tissue eQTLs and tissue-specific eQTLs via a stepwise procedure based on the extended Bayesian information criterion, which is consistent under high-dimensional settings. We show that MTWAS significantly improves the prediction accuracy across all 47 tissues of the GTEx dataset, compared with other single-tissue and multi-tissue methods, such as PrediXcan, TIGAR, and UTMOST. Applying MTWAS to the DICE and OneK1K datasets with bulk and single-cell RNA sequencing data on immune cell types showcases consistent improvements in prediction accuracy. MTWAS also identifies more predictable genes, and the improvement can be replicated with independent studies. We apply MTWAS to 84 UK Biobank GWAS studies, which provides insights into disease etiology.
Collapse
Affiliation(s)
- Shuang Song
- Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing, China
| | - Lijun Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Lin Hou
- Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing, China.
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Jun S Liu
- Department of Statistics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Reis J, Gorgulla C, Massari M, Marchese S, Valente S, Noce B, Basile L, Törner R, Cox H, Viennet T, Yang MH, Ronan MM, Rees MG, Roth JA, Capasso L, Nebbioso A, Altucci L, Mai A, Arthanari H, Mattevi A. Targeting ROS production through inhibition of NADPH oxidases. Nat Chem Biol 2023; 19:1540-1550. [PMID: 37884805 DOI: 10.1038/s41589-023-01457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
NADPH oxidases (NOXs) are transmembrane enzymes that are devoted to the production of reactive oxygen species (ROS). In cancers, dysregulation of NOX enzymes affects ROS production, leading to redox unbalance and tumor progression. Consequently, NOXs are a drug target for cancer therapeutics, although current therapies have off-target effects: there is a need for isoenzyme-selective inhibitors. Here, we describe fully validated human NOX inhibitors, obtained from an in silico screen, targeting the active site of Cylindrospermum stagnale NOX5 (csNOX5). The hits are validated by in vitro and in cellulo enzymatic and binding assays, and their binding modes to the dehydrogenase domain of csNOX5 studied via high-resolution crystal structures. A high-throughput screen in a panel of cancer cells shows activity in selected cancer cell lines and synergistic effects with KRAS modulators. Our work lays the foundation for the development of inhibitor-based methods for controlling the tightly regulated and highly localized ROS sources.
Collapse
Affiliation(s)
- Joana Reis
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Marta Massari
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Sara Marchese
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Basile
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Ricarda Törner
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Huel Cox
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thibault Viennet
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Moon Hee Yang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Andrea Mattevi
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
Beretti F, Gatti M, Zavatti M, Bassoli S, Pellacani G, Maraldi T. Reactive Oxygen Species Regulation of Chemoresistance and Metastatic Capacity of Melanoma: Role of the Cancer Stem Cell Marker CD271. Biomedicines 2023; 11:biomedicines11041229. [PMID: 37189846 DOI: 10.3390/biomedicines11041229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
BRAF mutations are present in 30-50% of cases of cutaneous melanoma, and treatment with selective BRAF and MEK inhibitors has been introduced. However, the development of resistance to these drugs often occurs. Chemo-resistant melanoma cells show increased expression of CD271, a stem cell marker that features increased migration. Concordantly, resistance to the selective inhibitor of oncogenic BRAFV600E/K, vemurafenib, is mediated by the increased expression of CD271. It has recently been shown that the BRAF pathway leads to an overexpression of the NADPH oxidase Nox4, which produces reactive oxygen species (ROS). Here, we examined in vitro how Nox-derived ROS in BRAF-mutated melanoma cells regulates their drug sensitivity and metastatic potential. We demonstrated that DPI, a Nox inhibitor, reduced the resistance of a melanoma cell line (SK-MEL-28) and a primary culture derived from a BRAFV600E-mutated biopsy to vemurafenib. DPI treatment affected the expression of CD271 and the ERK and Akt signaling pathways, leading to a drop in epithelial-mesenchymal transition (EMT), which undoubtedly promotes an invasive phenotype in melanoma. More importantly, the scratch test demonstrated the efficacy of the Nox inhibitor (DPI) in blocking migration, supporting its use to counteract drug resistance and thus cell invasion and metastasis in BRAF-mutated melanoma.
Collapse
Affiliation(s)
- Francesca Beretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Manuela Zavatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sara Bassoli
- Department of Dermatology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00185 Rome, Italy
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
5
|
Prata C, Maraldi T, Angeloni C. Strategies to Counteract Oxidative Stress and Inflammation in Chronic-Degenerative Diseases. Int J Mol Sci 2022; 23:ijms23126439. [PMID: 35742882 PMCID: PMC9223535 DOI: 10.3390/ijms23126439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
The great increase in life expectancy is linked to the necessity of counteracting chronic-degenerative diseases, e [...].
Collapse
Affiliation(s)
- Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
- Correspondence: (C.P.); (T.M.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy
- Correspondence: (C.P.); (T.M.)
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto, 47921 Rimini, Italy;
| |
Collapse
|