1
|
Wu T, Du Z, Li H, Jiang Z, Zheng M, Li Z, Hong T, Du X, Ni H, Zhu Y. A disulfide bond mutant of Pseudoalteromonas porphyrae κ-carrageenase conferred improved thermostability and catalytic activity and facilitated its utilization in κ-carrageenan industrial waste residues recycling. Int J Biol Macromol 2024; 280:135573. [PMID: 39270888 DOI: 10.1016/j.ijbiomac.2024.135573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
In this study, Discovery Studio was employed to predict the potential disulfide bond mutants of the catalytic domain of Pseudoalteromonas porphyrae κ-carrageenase to improve the catalytic activity and thermal stability. The mutant N205C-G239C was identified with significantly increased catalytic activity toward κ-carrageenan substrate, with activity 4.28 times that of WT. The optimal temperature of N205C-G239C was 55 °C, 15 °C higher than that of WT. For N205C-G239C, the t1/2 value at 50 °C was 52 min, 1.41 times that of WT. The microstructural analysis revealed that the introduced disulfide bond N205C-G239C could create a unique catalytic environment by promoting favorable interactions with κ-neocarratetraose. This interaction impacted various aspects such as product release, water molecule network, thermodynamic equilibrium, and tunnel size. Molecular dynamics simulations demonstrated that the introduced disulfide bond enhanced the overall structure rigidity of N205C-G239C. The results of substrate tunnel analysis showed that the mutation led to the widening of the substrate tunnel. The above structure changes could be the possible reasons responsible for the simultaneous enhancement of the catalytic activity and thermal stability of mutant N205C-G239C. Finally, N205C-G239C exhibited the effective hydrolysis of the κ-carrageenan industrial waste residues, contributing to the recycling of the oligosaccharides and perlite.
Collapse
Affiliation(s)
- Ting Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zeping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hebin Li
- Department of Pharmacy, Xiamen Medical College, Xiamen 361008, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Xiping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China.
| |
Collapse
|
2
|
Kushnireva L, Korkotian E, Segal M. Exposure of Cultured Hippocampal Neurons to the Mitochondrial Uncoupler Carbonyl Cyanide Chlorophenylhydrazone Induces a Rapid Growth of Dendritic Processes. Int J Mol Sci 2023; 24:12940. [PMID: 37629119 PMCID: PMC10455170 DOI: 10.3390/ijms241612940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
A major route for the influx of calcium ions into neurons uses the STIM-Orai1 voltage-independent channel. Once cytosolic calcium ([Ca2+]i) elevates, it activates mitochondrial and endoplasmic calcium stores to affect downstream molecular pathways. In the present study, we employed a novel drug, carbonyl cyanide chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, to explore the role of mitochondria in cultured neuronal morphology. CCCP caused a sustained elevation of [Ca2+]i and, quite surprisingly, a massive increase in the density of dendritic filopodia and spines in the affected neurons. This morphological change can be prevented in cultures exposed to a calcium-free medium, Orai1 antagonist 2APB, or cells transfected with a mutant Orai1 plasmid. It is suggested that CCCP activates mitochondria through the influx of calcium to cause rapid growth of dendritic processes.
Collapse
Affiliation(s)
- Liliia Kushnireva
- Faculty of Biology, Perm State University, 614068 Perm, Russia;
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Eduard Korkotian
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Menahem Segal
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
3
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
4
|
Wang WA, Demaurex N. The mammalian trafficking chaperone protein UNC93B1 maintains the ER calcium sensor STIM1 in a dimeric state primed for translocation to the ER cortex. J Biol Chem 2022; 298:101607. [PMID: 35065962 PMCID: PMC8857484 DOI: 10.1016/j.jbc.2022.101607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/28/2023] Open
Abstract
The stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum (ER) Ca2+ sensor that regulates the activity of Orai plasma membrane Ca2+ channels to mediate the store-operated Ca2+ entry pathway essential for immunity. Uncoordinated 93 homolog B1 (UNC93B1) is a multiple membrane-spanning ER protein that acts as a trafficking chaperone by guiding nucleic-acid sensing toll-like receptors to their respective endosomal signaling compartments. We previously showed that UNC93B1 interacts with STIM1 to promote antigen cross-presentation in dendritic cells, but the STIM1 binding site(s) and activation step(s) impacted by this interaction remained unknown. In this study, we show that UNC93B1 interacts with STIM1 in the ER lumen by binding to residues in close proximity to the transmembrane domain. Cysteine crosslinking in vivo showed that UNC93B1 binding promotes the zipping of transmembrane and proximal cytosolic helices within resting STIM1 dimers, priming STIM1 for translocation. In addition, we show that UNC93B1 deficiency reduces store-operated Ca2+ entry and STIM1-Orai1 interactions and targets STIM1 to lighter ER domains, whereas UNC93B1 expression accelerates the recruitment of STIM1 to cortical ER domains. We conclude that UNC93B1 therefore acts as a trafficking chaperone by maintaining the pool of resting STIM1 proteins in a state primed for activation, enabling their rapid translocation in an extended conformation to cortical ER signaling compartments.
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Crul T, Maléth J. Endoplasmic Reticulum-Plasma Membrane Contact Sites as an Organizing Principle for Compartmentalized Calcium and cAMP Signaling. Int J Mol Sci 2021; 22:4703. [PMID: 33946838 PMCID: PMC8124356 DOI: 10.3390/ijms22094703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 01/14/2023] Open
Abstract
In eukaryotic cells, ultimate specificity in activation and action-for example, by means of second messengers-of the myriad of signaling cascades is primordial. In fact, versatile and ubiquitous second messengers, such as calcium (Ca2+) and cyclic adenosine monophosphate (cAMP), regulate multiple-sometimes opposite-cellular functions in a specific spatiotemporal manner. Cells achieve this through segregation of the initiators and modulators to specific plasma membrane (PM) subdomains, such as lipid rafts and caveolae, as well as by dynamic close contacts between the endoplasmic reticulum (ER) membrane and other intracellular organelles, including the PM. Especially, these membrane contact sites (MCSs) are currently receiving a lot of attention as their large influence on cell signaling regulation and cell physiology is increasingly appreciated. Depletion of ER Ca2+ stores activates ER membrane STIM proteins, which activate PM-residing Orai and TRPC Ca2+ channels at ER-PM contact sites. Within the MCS, Ca2+ fluxes relay to cAMP signaling through highly interconnected networks. However, the precise mechanisms of MCS formation and the influence of their dynamic lipid environment on their functional maintenance are not completely understood. The current review aims to provide an overview of our current understanding and to identify open questions of the field.
Collapse
Affiliation(s)
- Tim Crul
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| |
Collapse
|