1
|
Lemmens-Gruber R, Tzotzos S. The Epithelial Sodium Channel-An Underestimated Drug Target. Int J Mol Sci 2023; 24:ijms24097775. [PMID: 37175488 PMCID: PMC10178586 DOI: 10.3390/ijms24097775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.
Collapse
Affiliation(s)
- Rosa Lemmens-Gruber
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | | |
Collapse
|
2
|
Zhao H, Liu P, Zha X, Zhang S, Cao J, Wei H, Wang M, Huang H, Wang W. Integrin ligands block mechanical signal transduction in baroreceptors. Life Sci Alliance 2023; 6:6/3/e202201785. [PMID: 36625204 PMCID: PMC9768909 DOI: 10.26508/lsa.202201785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
Baroreceptors are nerve endings located in the adventitia of the carotid sinus and aortic arch. They act as a mechanoelectrical transducer that can sense the tension stimulation exerted on the blood vessel wall by the rise in blood pressure and transduce the mechanical force into discharge of the nerve endings. However, the molecular identity of mechanical signal transduction from the vessel wall to the baroreceptor is not clear. We discovered that exogenous integrin ligands, such as RGD, IKVAV, YIGSR, PHSRN, and KNEED, could restrain pressure-dependent discharge of the aortic nerve in a dose-dependent and reversible manner. Perfusion of RGD at the baroreceptor site in vivo can block the baroreceptor reflex. An immunohistochemistry study showed the binding of exogenous RGD to the nerve endings under the adventitia of the rat aortic arch, which may competitively block the binding of integrins to ligand motifs in extracellular matrix. These findings suggest that connection of integrins with extracellular matrix plays an important role in the mechanical coupling process between vessel walls and arterial baroreceptors.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Yanjing Medical College, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Ping Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Xu Zha
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sitao Zhang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hua Wei
- Medical Experiment and Test Center, Capital Medical University, Beijing, China
| | - Meili Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China .,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| |
Collapse
|
3
|
Foote CA, Soares RN, Ramirez-Perez FI, Ghiarone T, Aroor A, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Endothelial Glycocalyx. Compr Physiol 2022; 12:3781-3811. [PMID: 35997082 PMCID: PMC10214841 DOI: 10.1002/cphy.c210029] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.
Collapse
Affiliation(s)
- Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rogerio N. Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Annayya Aroor
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Paudel P, van Hout I, Bunton RW, Parry DJ, Coffey S, McDonald FJ, Fronius M. Epithelial Sodium Channel δ Subunit Is Expressed in Human Arteries and Has Potential Association With Hypertension. Hypertension 2022; 79:1385-1394. [PMID: 35510563 DOI: 10.1161/hypertensionaha.122.18924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Elevated expression and increased activity of vascular epithelial sodium channel (ENaC) can result in vascular dysfunction in small animal models. However, there is limited or no knowledge on expression and function of ENaC channels in human vasculature. Hence, this study explored the expression and function of ENaC in human arteries and their association with hypertension. METHODS Human internal mammary artery (IMA) and aorta were obtained from cardiovascular patients undergoing coronary artery bypass graft surgery. Expression of the ENaC subunit was analyzed by polymerase chain reaction, Western blot, and immunohistochemistry. ENaC function was observed by patch-clamp electrophysiology in endothelial cells isolated from IMA. Levels of ENaC subunit expression levels were compared between arteries from normotensive, uncontrolled hypertensive, and controlled hypertensive patients. RESULTS For the first time, expression of α, β, γ, and δ was detected at mRNA and protein levels in human IMA and aorta. Single-channel patch-clamp recordings identified both αβγ- and δβγ-like channel conductance in primary endothelial cells isolated and cultured from IMA. Reduced expression of the δ subunit was observed in controlled hypertensive IMA, whereas reduced expression of γ-ENaC was observed in controlled hypertensive aorta. CONCLUSIONS These data suggest that functional ENaC channels are expressed in human arteries and their expression levels are associated with hypertension.
Collapse
Affiliation(s)
- Puja Paudel
- Department of Physiology, School of Biomedical Sciences (P.P., I.v.H., F.J.M., M.F.), University of Otago, Dunedin, New Zealand.,HeartOtago (P.P., I.v.H., S.C., M.F.), University of Otago, Dunedin, New Zealand
| | - Isabelle van Hout
- Department of Physiology, School of Biomedical Sciences (P.P., I.v.H., F.J.M., M.F.), University of Otago, Dunedin, New Zealand.,HeartOtago (P.P., I.v.H., S.C., M.F.), University of Otago, Dunedin, New Zealand
| | - Richard W Bunton
- Department of Cardiothoracic Surgery, Otago Medical School, Dunedin Hospital, New Zealand (R.W.B., D.J.P.)
| | - Dominic J Parry
- Department of Cardiothoracic Surgery, Otago Medical School, Dunedin Hospital, New Zealand (R.W.B., D.J.P.)
| | - Sean Coffey
- HeartOtago (P.P., I.v.H., S.C., M.F.), University of Otago, Dunedin, New Zealand.,Department of Medicine, Otago Medical School (S.C.), University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences (P.P., I.v.H., F.J.M., M.F.), University of Otago, Dunedin, New Zealand
| | - Martin Fronius
- Department of Physiology, School of Biomedical Sciences (P.P., I.v.H., F.J.M., M.F.), University of Otago, Dunedin, New Zealand.,HeartOtago (P.P., I.v.H., S.C., M.F.), University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Fronius M. Epithelial Na+ channel and the glycocalyx: a sweet and salty relationship for arterial shear stress sensing. Curr Opin Nephrol Hypertens 2022; 31:142-150. [PMID: 34966089 DOI: 10.1097/mnh.0000000000000779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The ability of endothelial cells to sense mechanical force, and shear stress in particular, is crucial for normal vascular function. This relies on an intact endothelial glycocalyx that facilitates the production of nitric oxide (NO). An emerging arterial shear stress sensor is the epithelial Na+ channel (ENaC). This review highlights existing and new evidence for the interdependent activity of the glycocalyx and ENaC and its implications for vascular function. RECENT FINDINGS New evidence suggests that the glycocalyx and ENaC are physically connected and that this is important for shear stress sensing. The connection relies on N-glycans attached to glycosylated asparagines of α-ENaC. Removal of specific N-glycans reduced ENaC's shear stress response. Similar effects were observed following degradation of the glycocalyx. Endothelial specific viral transduction of α-ENaC increased blood pressure (∼40 mmHg). This increase was attenuated in animals transduced with an α-ENaC version lacking N-glycans. SUMMARY These observations indicate that ENaC is connected to the glycocalyx and their activity is interdependent to facilitate arterial shear stress sensation. Future research focusing on how N-glycans mediate this interaction can provide new insights for the understanding of vascular function in health and disease.
Collapse
Affiliation(s)
- Martin Fronius
- Department of Physiology, School of Biomedical Sciences
- HeartOtago, University of Otago, Dunedin
- Healthy Hearts Aotearoa New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Centre of Research Excellence, Auckland, New Zealand
| |
Collapse
|
6
|
Zhang J, Yuan HK, Chen S, Zhang ZR. Detrimental or beneficial: Role of endothelial ENaC in vascular function. J Cell Physiol 2021; 237:29-48. [PMID: 34279047 DOI: 10.1002/jcp.30505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
In the past, it was believed that the expression of the epithelial sodium channel (ENaC) was restricted to epithelial tissues, such as the distal nephron, airway, sweat glands, and colon, where it is critical for sodium homeostasis. Over the past two decades, this paradigm has shifted due to the finding that ENaC is also expressed in various nonepithelial tissues, notably in vascular endothelial cells. In this review, the recent findings of the expression, regulation, and function of the endothelial ENaC (EnNaC) are discussed. The expression of EnNaC subunits is reported in a variety of endothelial cell lines and vasculatures, but this is controversial across different species and vessels and is not a universal finding in all vascular beds. The expression density of EnNaC is very faint compared to ENaC in the epithelium. To date, little is known about the regulatory mechanism of EnNaC. Through it can be regulated by aldosterone, the detailed downstream signaling remains elusive. EnNaC responds to increased extracellular sodium with the feedforward activation mechanism, which is quite different from the Na+ self-inhibition mechanism of ENaC. Functionally, EnNaC was shown to be a determinant of cellular mechanics and vascular tone as it can sense shear stress, and its activation or insertion into plasma membrane causes endothelial stiffness and reduced nitric oxide production. However, in some blood vessels, EnNaC is essential for maintaining the integrity of endothelial barrier function. In this context, we discuss the possible reasons for the distinct role of EnNaC in vasculatures.
Collapse
Affiliation(s)
- Jun Zhang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Kai Yuan
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Chen
- Department of Biopharmaceutical Sciences, School of Pharmacy, Harbin Medical University (Daqing), Daqing, China
| | - Zhi-Ren Zhang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| |
Collapse
|