1
|
Tshivhase AM, Matsha T, Raghubeer S. Resveratrol attenuates high glucose-induced inflammation and improves glucose metabolism in HepG2 cells. Sci Rep 2024; 14:1106. [PMID: 38212345 PMCID: PMC10784549 DOI: 10.1038/s41598-023-50084-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
Diabetes mellitus (DM) is characterized by impaired glucose and insulin metabolism, resulting in chronic hyperglycemia. Hyperglycemia-induced inflammation is linked to the onset and progression of diabetes. Resveratrol (RES), a polyphenol phytoalexin, is studied in diabetes therapeutics research. This study evaluates the effect of RES on inflammation and glucose metabolism in HepG2 cells exposed to high glucose. Inflammation and glucose metabolism-related genes were investigated using qPCR. Further, inflammatory genes were analyzed by applying ELISA and Bioplex assays. High glucose significantly increases IKK-α, IKB-α, and NF-kB expression compared to controls. Increased NF-kB expression was followed by increased expression of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-β, and COX2. RES treatment significantly reduced the expression of NF-kB, IKK-α, and IKB-α, as well as pro-inflammatory cytokines. High glucose levels reduced the expression of TGFβ1, while treatment with RES increased the expression of TGFβ1. As glucose levels increased, PEPCK expression was reduced, and GCK expression was increased in HepG2 cells treated with RES. Further, HepG2 cells cultured with high glucose showed significant increases in KLF7 and HIF1A but decreased SIRT1. Moreover, RES significantly increased SIRT1 expression and reduced KLF7 and HIF1A expression levels. Our results indicated that RES could attenuate high glucose-induced inflammation and enhance glucose metabolism in HepG2 cells.
Collapse
Affiliation(s)
- Abegail Mukhethwa Tshivhase
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Tandi Matsha
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
- Sefako Makgatho Health Sciences University, Ga-Rankuwa, 0208, South Africa
| | - Shanel Raghubeer
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa.
| |
Collapse
|
2
|
Wei P, Wang M, Lin M, Wang Z. Tripterine Serves a Dual Role in Palmitate-Induced Pancreatic Beta-Cell Lipotoxicity. DOKL BIOCHEM BIOPHYS 2023; 511:156-161. [PMID: 37833599 DOI: 10.1134/s1607672923600057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Tripterine (TP, also called celastrol), a pentacyclic triterpene extracted from Tripterygium wilfordii, has beneficial effects on multiple diseases, including obesity and diabetes. However, the effects of TP on β‑cell lipotoxicity have not been fully explored. Here, we found that TP modulated β-cell lipotoxicity in a concentration-dependent and bidirectional manner. At low concentrations, TP potentially protected MIN6 β-cells from palmitate (PA)-induced lipotoxicity. At high concentrations, TP significantly promoted β-cell lipotoxicity, further reinforcing PA-induced cell apoptosis. Furthermore, low-concentration TP inhibited the PA-induced increase in reactive oxygen species (ROS) levels, and its protective effects were abolished by the ROS inducer tert-butyl hydroperoxide. Conversely, high-concentration TP significantly exacerbated the PA-triggered ROS generation, and its enhanced cytotoxicity was partially reversed by the ROS inhibitor N-acetyl-L-cysteine. Thus, TP plays a dual role in β-cell lipotoxicity, suggesting that care should be taken when it is used for obesity and diabetes treatment.
Collapse
Affiliation(s)
- Pei Wei
- Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Min Wang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mao Lin
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zhiyong Wang
- Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China.
| |
Collapse
|
3
|
Guo F, Yao L, Zhang W, Chen P, Hao R, Huang X, Jiang J, Wu S. The therapeutic mechanism of Yuye decoction on type 2 diabetes mellitus based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116222. [PMID: 36828194 DOI: 10.1016/j.jep.2023.116222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yuye decoction (YYD) has been widely used as a folk Chinese herbal formula in clinical treatment of type 2 diabetes mellitus(T2DM) for many years. However, its mechanism is still unclear. AIM OF THE STUDY The aim of this study was to explore the potential mechanism of YYD against T2DM initially by UHPLC-MS/MS combining with network pharmacology, molecular docking techniques and experimental validation. MATERIALS AND METHODS The main ingredients in the water extract of YYD were initially identified using UHPLC-MS/MS analysis. Combined with network pharmacology and molecular docking techniques, the YYD key compounds-core targets-key signaling pathways network was constructed and the binding activity of key components to core targets was validated. The T2DM rat model was induced by Streptozotocin combined with high glucose and high fat diets. The apoptosis cell model of mouse islet β-cell of Min6 was induced by high-glucose and palmitic acid. Histopathological and immunofluorescence satining were used to evaluate pancreatic islet β-cell function and apoptosis in rats. Min6 cell viability and apoptosis ratio were evaluated by CCK-8 and TUNEL staining. The predicted targets and pathways were validated by experiments in vitro and in vivo. RESULTS The 56 compounds from YYD were identified by UHPLC-MS/MS. The potential targets of the above compounds were predicted by online compound target database, among of which 362 targets were associated with T2DM. Protein-protein interaction analysis identified the main targets such as SRC, MAPK1, PIK3R1, AKT1, HRAS and HSP90AA1, which were considered as the therapeutic targets of YYD on against T2DM. Functional enrichment analysis revealed that PI3K/AKT, FoxO and apoptosis signaling pathways were significantly enriched. Molecular docking results showed that compounds of monolinolein, neomangiferin, mangiferin, pelargonidin-3-O-glucoside and acacetin from YYD had high binding activities to PIK3R1, AKT1, Sirt1 and FoxO1. Therefore, PI3K/AKT1, Sirt1/FoxO1 and apoptotic signaling pathways were considered as predicted targets for experimental validation study. Animal experiments showed that YYD reduced blood glucose levels, improved pancreatic dysfunction and pancreatic islet β-cells apoptosis in T2DM rats which contributed to the activation of AKT1 and FoxO1 and their related signaling molecules. These results were confirmed in Min6 cell model induced by high-glucose and palmitic acid. CONCLUSIONS In summary, this study systematically visualized the possible therapeutic effects and mechanisms of YYD on T2DM through the network pharmacology approach and experimental study. The results indicated that YYD could prevent pancreatic islet dysfunction and reverse islet of β-cells apoptosis possibly via PI3K/AKT1, Sirt1/FoxO1 signaling pathways.
Collapse
Affiliation(s)
- Feng Guo
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, 830017, China.
| | - Wenxiang Zhang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Pengde Chen
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Rui Hao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Xuelian Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jie Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Siyu Wu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, 830017, China
| |
Collapse
|
4
|
Vilas-Boas EA, Almeida DC, Roma LP, Ortis F, Carpinelli AR. Lipotoxicity and β-Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress. Cells 2021; 10:cells10123328. [PMID: 34943836 PMCID: PMC8699655 DOI: 10.3390/cells10123328] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
A high caloric intake, rich in saturated fats, greatly contributes to the development of obesity, which is the leading risk factor for type 2 diabetes (T2D). A persistent caloric surplus increases plasma levels of fatty acids (FAs), especially saturated ones, which were shown to negatively impact pancreatic β-cell function and survival in a process called lipotoxicity. Lipotoxicity in β-cells activates different stress pathways, culminating in β-cells dysfunction and death. Among all stresses, endoplasmic reticulum (ER) stress and oxidative stress have been shown to be strongly correlated. One main source of oxidative stress in pancreatic β-cells appears to be the reactive oxygen species producer NADPH oxidase (NOX) enzyme, which has a role in the glucose-stimulated insulin secretion and in the β-cell demise during both T1 and T2D. In this review, we focus on the acute and chronic effects of FAs and the lipotoxicity-induced β-cell failure during T2D development, with special emphasis on the oxidative stress induced by NOX, the ER stress, and the crosstalk between NOX and ER stress.
Collapse
Affiliation(s)
- Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-900, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| | - Davidson Correa Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Leticia Prates Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany;
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| |
Collapse
|
5
|
Yu YY, Liu QP, Li MT, An P, Chen YY, Luan X, Lv C, Zhang H. Hu-Zhang-Qing-Mai-Yin Inhibits Proliferation of Human Retinal Capillary Endothelial Cells Exposed to High Glucose. Front Pharmacol 2021; 12:732655. [PMID: 34421625 PMCID: PMC8377758 DOI: 10.3389/fphar.2021.732655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 11/27/2022] Open
Abstract
Background: Diabetic retinopathy (DR) is one of the serious complications of diabetes and an important cause of blindness. Despite much research on the pathogenesis of DR, there is still a lack of safe and effective treatment methods. Hu-zhang-qing-mai-yin (HZQMY), a Chinese medicine formula, has been clinically used in the safe and effective treatment of DR for many years. However, the systematic pharmacological research is lacking. The aim of this study was to evaluate the anti-DR effects of HZQMY and explore the possible mechanism involved. Methods: The constituents of HZQMY were analyzed by LC-MS/MS. DR model was established by high glucose simulation on human retinal capillary endothelial cells (HRCECs) in vitro. The cell viability, cell proliferation, cell apoptosis, and tube formation were assessed. Subsequently the related mechanisms were analyzed by assays for JC-1 mitochondrial membrane potential (MMP), intracellular ROS, ATP, western blot and proteomics. Results: 27 main chemical components contained in HZQMY were identified. HZQMY significantly inhibited the viability and proliferation of HRCECs exposed to high glucose, and promoted the apoptosis. In addition, HZQMY also boosted the release of ROS and suppressed tube formation of HRCECs under high glucose exposure. Meanwhile, HRCECs treated with high glucose released more ROS than normal cells, which could be markedly inhibited by HZQMY in a dose-dependent manner. Additionally, western blot assay indicated that HZQMY increased the expression of proteins related to the P38 signaling pathway and inhibited nuclear factor kappa-B (NF-κB) pathway. Proteomic analysis predicted that HSPA4, MAPK3, ENO1, EEF2 and ERPS may be the candidate targets of HZQMY in HRCECs. Conclusions: HZQMY inhibited the proliferation and promoted the Mitochondria related apoptosis of HRCECs exposed to high glucose possibly through regulating P38 and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuan-Yuan Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng-Ting Li
- Department of Neurology, Yueyang Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Lv
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|