1
|
Shcheblykin DV, Bolgov AA, Pokrovskii MV, Stepenko JV, Tsuverkalova JM, Shcheblykina OV, Golubinskaya PA, Korokina LV. Endothelial dysfunction: developmental mechanisms and therapeutic strategies. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.80376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Every year the importance of the normal functioning of the endothelial layer of the vascular wall in maintaining the health of the body becomes more and more obvious.
The physiological role of the endothelium: The endothelium is a metabolically active organ actively involved in the regulation of hemostasis, modulation of inflammation, maintenance of hemovascular homeostasis, regulation of angiogenesis, vascular tone, and permeability.
Risk factors for the development of endothelial dysfunction: Currently, insufficient bioavailability of nitric oxide is considered the most significant risk factor for endothelial dysfunction.
Mechanisms of development of endothelial dysfunction: The genesis of endothelial dysfunction is a multifactorial process. Among various complex mechanisms, this review examines oxidative stress, inflammation, hyperglycemia, vitamin D deficiency, dyslipidemia, excess visceral fat, hyperhomocysteinemia, hyperuricemia, as well as primary genetic defect of endotheliocytes, as the most common causes in the population underlying the development of endothelial dysfunction.
Markers of endothelial dysfunction in various diseases: This article discusses the main biomarkers of endothelial dysfunction currently used, as well as promising biomarkers in the future for laboratory diagnosis of this pathology.
Therapeutic strategies: Therapeutic approaches to the endothelium in order to prevent or reduce a degree of damage to the vascular wall are briefly described.
Conclusion: Endothelial dysfunction is a typical pathological process involved in the pathogenesis of many diseases. Thus, pharmacological agents with endothelioprotective properties can provide more therapeutic benefits than a drug without such an effect.
Collapse
|
2
|
Spaggiari G, Romeo M, Casarini L, Granata ARM, Simoni M, Santi D. Human fertility and sleep disturbances: A narrative review. Sleep Med 2022; 98:13-25. [PMID: 35772248 DOI: 10.1016/j.sleep.2022.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Many factors may be hidden behind the global fertility decline observed in Western countries. Alongside the progressively increased age of infertile couples, environmental and behavioural factors, including non-optimal lifestyle habits, should be considered. Among these, sleep disorders have been suggested to be linked to human fertility. METHODS This is a narrative review, describing first sleep physiology, its disturbances, and the tools able to quantify sleep dysfunction. Then, we consider all available studies aimed at investigating the connection between sleep disorders and human fertility, providing a comprehensive view on this topic. RESULTS Forty-two studies investigating the relationship between sleep habits and human reproduction were included. All the published evidence was grouped according to the aspect of human fertility considered, i.e. i) female reproductive functions, ii) male reproductive functions, iii) natural conception and iv) assisted reproduction. For each of the sub-groups considered, the connection between sleep dysregulation and human fertility was classified according to specific sleep characteristics, such as sleep duration, quality, and habits. In addition, possible physio-pathological mechanisms proposed to support the link between sleep and fertility were summarized. CONCLUSION This review summarizes the most relevant findings about the intricate and still largely unknown network of molecular pathways involved in the regulation of circadian homeostasis, to which sleep contributes, essential for reproductive physiology. Thus, many mechanisms seem correlate sleep disorders to reproductive health, such as adrenal activation, circadian dysregulation, and genetic influences. This review highlights the need to properly designed trials on the topic.
Collapse
Affiliation(s)
- Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Marilina Romeo
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Livio Casarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio R M Granata
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
3
|
Baszyński J, Kamiński P, Bogdzińska M, Mroczkowski S, Szymański M, Wasilow K, Stanek E, Hołderna-Bona K, Brodzka S, Bilski R, Tkachenko H, Kurhaluk N, Stuczyński T, Lorek M, Woźniak A. Enzymatic Antioxidant Defense and Polymorphic Changes in Male Infertility. Antioxidants (Basel) 2022; 11:817. [PMID: 35624681 PMCID: PMC9138092 DOI: 10.3390/antiox11050817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/27/2023] Open
Abstract
The intensification of oxidative stress and destabilization of the antioxidative defenses of an organism is a consequence of many environmental factors. We considered aspects conditioning male reproductive potential and the functionality of enzymatic antioxidative mechanisms, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR), and their correlations with Li, Be, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Sn, Sb, Ba, Hg, Tl, Pb, and malondialdehyde (MDA), as well as genetic polymorphism IL-4v.C589T (rs2243250) in men with infertility (n = 76). A healthy normozoospermic control (n = 87) was also used. We assessed the impact of negative changes driven by oxidative stress on enzymatic antioxidative mechanisms as well as the role of MDA in the overall process. On this basis, we infer connections between disturbances in enzymatic antioxidative defense and reproductive potential. Based on a molecular analysis of the polymorphism of gene IL-4v.C589T (rs2243250) (chromosome 5) (PCR-RFLP), we considered the relationships among particular genotypes with the possibility of occurrence of male infertility. Concentrations of chemical elements were measured in the blood. The activity of antioxidants and MDA levels were measured in serum. In the infertile group, higher GPx activity was noted (6.56 nmoL·min-1·mL-1, control: 4.31 nmoL·min-1·mL-1; p = 0.004), while GR achieved a greater level in the control (17.74 nmoL·min-1·mL-1, infertile: 15.97 nmoL·min-1·mL-1, p = 0.043), which implies diversified efficiency of the first and second lines of defense. The polymorphism of IL-4v.C589T (rs2243250) was not directly connected with infertility because there were not any differences in the frequency of genotypes between the infertile and control group (p = 0.578). An analysis of genotypes CC and TT (polymorphism IL-4v.C589T (rs2243250)) indicated numerous correlations between antioxidants, chemical elements and MDA. Therefore, chemical economy, antioxidative defense and genetic conditions are connected and jointly shape male reproductive potential. Chemical elements influence antioxidative defense and male fertility; the most important modulators appeared to be Na, Ba, Al and B. The polymorphism of gene IL-4v.C589T (rs2243250) has a limited influence on antioxidative defense and the metabolism of chemical elements.
Collapse
Affiliation(s)
- Jędrzej Baszyński
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (J.B.); (E.S.); (K.H.-B.); (S.B.); (M.L.)
| | - Piotr Kamiński
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (J.B.); (E.S.); (K.H.-B.); (S.B.); (M.L.)
- Department of Biotechnology, Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland
| | - Maria Bogdzińska
- Department of Genetics and Animal Breeding, Faculty of Animal Breeding and Biology, UTP University of Science and Technology in Bydgoszcz, Hetmańska St. 33, PL 85-039 Bydgoszcz, Poland; (M.B.); (S.M.)
| | - Sławomir Mroczkowski
- Department of Genetics and Animal Breeding, Faculty of Animal Breeding and Biology, UTP University of Science and Technology in Bydgoszcz, Hetmańska St. 33, PL 85-039 Bydgoszcz, Poland; (M.B.); (S.M.)
| | - Marek Szymański
- Department of Obstetrics, Female Pathology and Oncological Gynecology, University Hospital No. 2, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejski St. 75, PL 85-168 Bydgoszcz, Poland;
- NZOZ Medical Center Co., Waleniowa St. 24, PL 85-435 Bydgoszcz, Poland;
| | - Karolina Wasilow
- NZOZ Medical Center Co., Waleniowa St. 24, PL 85-435 Bydgoszcz, Poland;
- Family Medicine Clinic, University Hospital No. 2, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejski St. 75, PL 85-168 Bydgoszcz, Poland
| | - Emilia Stanek
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (J.B.); (E.S.); (K.H.-B.); (S.B.); (M.L.)
| | - Karolina Hołderna-Bona
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (J.B.); (E.S.); (K.H.-B.); (S.B.); (M.L.)
| | - Sylwia Brodzka
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (J.B.); (E.S.); (K.H.-B.); (S.B.); (M.L.)
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland; (R.B.); or (A.W.)
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, K. Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (H.T.); (N.K.)
| | - Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, K. Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (H.T.); (N.K.)
| | - Tomasz Stuczyński
- Department of Soil Structure, Institute of Soil and Plant Cultivation-Government Scientific Institute, Czartoryskich St. 8, PL 24-100 Puławy, Poland; or
- Faculty of Mathematics Informatics and Landscape Architecture, The John Paul II Catholic University of Lublin, Konstantynów 1 H, PL 20-708 Lublin, Poland
| | - Małgorzata Lorek
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (J.B.); (E.S.); (K.H.-B.); (S.B.); (M.L.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland; (R.B.); or (A.W.)
| |
Collapse
|