1
|
Singh R, Shukla J, Ali M, Dubey AK. A Novel Benzopyrone Derivative from Streptomyces chrestomyceticus ADP4 Inhibits Growth and Virulence Factors of Candida albicans. Curr Microbiol 2025; 82:201. [PMID: 40100410 DOI: 10.1007/s00284-025-04169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to human health globally. Expeditious discovery and development of new drugs has become indispensable for addressing this challenge. In this context, a novel benzopyrone derivative, designated as 82B1, has been isolated from S. chrestomyceticus strain ADP4. This compound exhibited significant inhibitory activity against different Candida species including C. albicans, C. tropicalis, C. krusei, C. parapsilosis and C. auris with minimum inhibitory concentration (MIC90) values in the concentration range of 25-125 µg/mL. The structure of 82B1 was elucidated through analyses of the spectral data obtained using liquid chromatography-tandem mass spectrometry (LCMS/MS), Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet (UV) spectroscopy, that led to its identity as 7, 13, 14-trihydroxy-6H-benzo-[c]-chromen-6-one8-[1'β-carboxycyclopentanyl]-2'β-[8'β-ethylcyclopentane]. It significantly inhibited the major virulence factors of C. albicans such as yeast to hyphae transition, biofilm formation, and secretion of hydrolytic enzymes at its subinhibitory concentrations. It did not display cytotoxicity on human hepatoblastoma cell line (HepG2 cells), signifying its potential as a candidate for anti-Candida drug development.
Collapse
Affiliation(s)
- Radha Singh
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Jyoti Shukla
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Mohd Ali
- Faculty of Pharmacy, Hamdard University, New Delhi, 110062, India
| | - Ashok K Dubey
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
2
|
Sağır S, Unsal V, Oner E, Yıldız R, Mert BD. Comparison of PDE-5 inhibitors used in erectile dysfunction with some candidate molecules: A study involving molecular docking, ADMET, DFT, biological target, and activity. BMC Urol 2025; 25:47. [PMID: 40069715 PMCID: PMC11895370 DOI: 10.1186/s12894-025-01727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
Erectile dysfunction (ED) is a urological condition defined as the inability of a man to achieve or maintain an erection. This condition negatively affects his sexual performance and the performance of his partner. Phosphodiesterase type 5 (PDE5) inhibitors are commonly used to treat ED. Arginase II plays an important role in regulating L-arginine to NO synthase in the smooth muscle of the human corpus cavernosum of the penis. NO is a molecule essential for regulating a variety of functions, including arterial blood pressure, penile erection, and energy balance. Substances such as vardenafil, alprostadil, papaverine, and resveratrol increase NO production, thereby supporting sexual function and vascular health. Additionally, NO donors such as L-arginine, L-citrulline, and α-lipoic acid provide effective alternatives when used in combination with PDE5 inhibitors. Medications used in the treatment of ED include vardenafil, alprostadil, and papaverine. In addition, although molecules such as L-arginine, citrulline, resveratrol, alpha-lipoic acid, and rutin are thought to play a role in ED, their pharmacological and molecular effects have not been sufficiently elucidated. The aim of this study was to investigate the effects of these molecules in the treatment of ED by computer-based calculations, to obtain new information about them and to inspire new treatment strategies for ED. The physicochemical, molecular and pharmacokinetic properties of the compounds were determined by SwissADME software, and ADMET (absorption, distribution, metabolism, excretion and toxicity) data were determined by ADMETlab 3.0 software. Biological target and activity data were obtained by MolPredictX and PASS Online software. While the Gaussian 09 program was used for DFT calculations, PyMOL, AutodockTools 4.2.6, AutoDock Vina, and Biovia Discovery programs were used for molecular docking studies. It was found that L-arginine, citrulline, resveratrol and α-lipoic acid were well absorbed from the intestine, while rutin showed limited absorption. When their metabolic risks were evaluated, L-arginine and citrulline were found to have lower toxicity. Molecular docking results of rutin and resveratrol were remarkable. The electronic properties of the compounds were explained by DFT calculations. L-arginine and citrulline were found to have low toxicity and positive therapeutic effects. L-arginine and citrulline stand out as promising candidates for future research. Although resveratrol data are promising, unfortunately their potential toxicity and metabolic interactions require further investigation. It is important to learn more about these compounds or conduct research to improve their therapeutic efficacy. Although computer-based calculations play an important role in toxicity predictions, drug interactions, pharmacokinetics and toxicity properties should be carefully evaluated.
Collapse
Affiliation(s)
- Süleyman Sağır
- Department of Urology, Faculty of Medicine, Mardin Artuklu University, Mardin, 47200, Türkiye
| | - Velid Unsal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, Mardin, 47200, Türkiye.
| | - Erkan Oner
- Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02000, Türkiye
| | - Reşit Yıldız
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, Mardin, 47200, Türkiye
| | - Başak Doğru Mert
- Energy Systems Engineering Department, Engineering Faculty, Adana Alparslan Türkeş Science and Technology University, Adana, 01250, Türkiye
| |
Collapse
|
3
|
Unsal V, Oner E, Yıldız R, Mert BD. Comparison of new secondgeneration H1 receptor blockers with some molecules; a study involving DFT, molecular docking, ADMET, biological target and activity. BMC Chem 2025; 19:4. [PMID: 39755645 DOI: 10.1186/s13065-024-01371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Although the antiallergic properties of compounds such as CAPE, Melatonin, Curcumin, and Vitamin C have been poorly discussed by experimental studies, the antiallergic properties of these famous molecules have never been discussed with calculations. The histamine-1 receptor (H1R) belongs to the family of rhodopsin-like G-protein-coupled receptors expressed in cells that mediate allergies and other pathophysiological diseases. In this study, pharmacological activities of FDA-approved second generation H1 antihistamines (Levocetirizine, desloratadine and fexofenadine) and molecules such as CAPE, Melatonin, Curcumin, Vitamin C, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) profiles, density functional theory (DFT), molecular docking, biological targets and activities were compared by calculating. Since drug development is an extremely risky, costly and time-consuming process, the data obtained in this study will facilitate and guide future studies. It will also enable researchers to focus on the most promising compounds, providing an effective design strategy. Their pharmacological activity was carried out using computer-based computational techniques including DFT, molecular docking, ADMET analysis, biological targeting, and activity methods. The best binding sites of Desloratadine, Levocetirizine, Fexofenadine, CAPE, Quercetin, Melatonin, curcumin, Vitamin C ligands to Desmoglein 1, Human Histamine H1 receptor, IgE and IL13 protons were determined by molecular docking method and binding energy and interaction states were analyzed. Fexofenadine and Quercetin ligand showed the most effective binding affinity. Melatonin had the best Caco-2 permeability PPB values of Quercetin, CAPE and Curcumin were at optimal levels. On the OATP1B1 and OATP1B3 of curcumin and CAPE, Quercetin was found to have strong inhibition effects on BCRP. Melatonin and CAPE were found to have the highest inhibition values on CYP1A2, while CAPE had the highest inhibition values on CYP2C19 and CYP2C9. Vitamin C and Quercetin were found to be safer in terms of cardiac toxicity and mutagenic risks, while Desloratadine and Levocetirizine carried high risks of neurotoxicity and hematotoxicity, while CAPE was noted for its high enzyme inhibitory activities and low toxicity profiles, while the hERG blockade, DILI, and cytotoxicity values of other compounds pointed to various safety concerns. This study demonstrated the potential of machine learning methods in understanding and discovering H1 receptor blockers. The results obtained provide important clues in the development of important strategies in the clinical use of H1 receptor blockers. In the light of these data, CAPE and Quercetin are remarkable molecules.
Collapse
Affiliation(s)
- Velid Unsal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, 47100, Mardin, Türkiye.
| | - Erkan Oner
- Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, 02000, Adıyaman, Türkiye
| | - Reşit Yıldız
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, 47100, Mardin, Türkiye
| | - Başak Doğru Mert
- Energy Systems Engineering Department, Engineering Faculty, Adana Alparslan Türkeş Science and Technology University, 01250, Adana, Türkiye
| |
Collapse
|
4
|
Fathy H, Helal MH, Abbas D, Mohamed FA. Synthesis and characterization of some new Schiff base azo disperse dyes based on chromene moiety for simultaneous dyeing and antimicrobial finishing. Sci Rep 2024; 14:23164. [PMID: 39369046 PMCID: PMC11455861 DOI: 10.1038/s41598-024-73253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024] Open
Abstract
New azo Schiff base disperse dyes based on a chromene moiety were synthesized by reacting (2-amino-7-hydroxy-4-(4-methoxyphenyl)-4 H-chromene-3 carbonitrile) and(2-amino-4-(3,4-dimethoxyphenyl)-7-hydroxy-4 H-chromene-3-carbonitrile), with vanillin and ninhydrin, producing new chromene Schiff base derivatives, which in turn were coupled with 2-chloro-4-nitroaniline diazonium salt to give new 4 azo disperse dyes (1-4). The structures of the prepared dyes were confirmed using elemental analysis, 1HNMR spectroscopy, mass spectrometry, and IR. The synthesized dyes were applied to polyester and nylon fabrics using different dyeing techniques: high temperature- high pressure, and ultrasonic dyeing methods. The highest K/S values for all investigated dyes were achieved usinga high temperature-high pressure dyeing technique. Also, the color reflectance of all synthesized dyes with different dyeing shades (1%, 2%, and 3%) was obtained. The fastness properties of the dyed samples using the investigated dyes showed good color fastness toward light, washing, rubbing, and perspiration fastness. The presence of a chromene moiety and Schiff base in the investigated dyes promotes a higher antimicrobial activity on nylon and polyester fabrics against all tested bacteria (E. coli gram-negative and Staphylococcus aureus gram-positive) and two fungi, Aspergillus Niger and Candida albicans.
Collapse
Affiliation(s)
- Hagar Fathy
- Dyeing, Printing and Auxiliaries Department, Institute for Textile Research and Technology, National Research Center, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - M H Helal
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Dina Abbas
- Dyeing, Printing and Auxiliaries Department, Institute for Textile Research and Technology, National Research Center, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Fatma A Mohamed
- Dyeing, Printing and Auxiliaries Department, Institute for Textile Research and Technology, National Research Center, 33 El Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
5
|
Elsayad KA, Elmasry GF, Mahmoud ST, Awadallah FM. Sulfonamides as anticancer agents: A brief review on sulfonamide derivatives as inhibitors of various proteins overexpressed in cancer. Bioorg Chem 2024; 147:107409. [PMID: 38714116 DOI: 10.1016/j.bioorg.2024.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/17/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Sulfonamides have gained prominence as versatile agents in cancer therapy, effectively targeting a spectrum of cancer-associated enzymes. This review provides an extensive exploration of their multifaceted roles in cancer biology. Sulfonamides exhibit adaptability by acting as tyrosine kinase inhibitors, disrupting pivotal signaling pathways in cancer progression. Moreover, they disrupt pH regulation mechanisms in cancer cells as carbonic anhydrase inhibitors, inhibiting growth, and survival. Sulfonamides also serve as aromatase inhibitors, interfering with estrogen synthesis in hormone-driven cancers. Inhibition of matrix metalloproteinases presents an opportunity to impede cancer cell invasion and metastasis. Additionally, their emerging role as histone deacetylase inhibitors offers promising prospects in epigenetic-based cancer therapies. These diverse roles underscore sulfonamides as invaluable tools for innovative anti-cancer treatments, warranting further exploration for enhanced clinical applications and patient outcomes.
Collapse
Affiliation(s)
- Khaled A Elsayad
- Pharmacy Department, Cairo University Hospitals, Cairo University, Cairo, 11662, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Sally T Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Fadi M Awadallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| |
Collapse
|
6
|
Yan P, Acker CD, Biasci V, Judge G, Monroe A, Sacconi L, Loew LM. Near-infrared voltage-sensitive dyes based on chromene donor. Proc Natl Acad Sci U S A 2023; 120:e2305093120. [PMID: 37579138 PMCID: PMC10450434 DOI: 10.1073/pnas.2305093120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/29/2023] [Indexed: 08/16/2023] Open
Abstract
Voltage-sensitive dyes (VSDs) are used to image electrical activity in cells and tissues with submillisecond time resolution. Most of these fast sensors are constructed from push-pull chromophores whose fluorescence spectra are modulated by the electric field across the cell membrane. It was found that the substitution of naphthalene with chromene produces a 60 to 80 nm red-shift in absorption and emission spectra while maintaining fluorescence quantum efficiency and voltage sensitivity. One dye was applied to ex vivo murine heart with excitation at 730 nm, by far the longest wavelength reported in voltage imaging. This VSD resolves cardiac action potentials in single trials with 12% ΔF/F per action potential. The well-separated excitation spectra between these long-wavelength VSDs and channelrhodopsin (ChR2) enabled monitoring of action potential propagation in ChR2 hearts without any perturbation of electrical dynamics. Importantly, by employing spatially localized optogenetic manipulation, action potential dynamics can be assessed in an all-optical fashion with no artifact related to optical cross-talk between the reporter and actuator. These new environmentally sensitive chromene-based chromophores are also likely to have applications outside voltage imaging.
Collapse
Affiliation(s)
- Ping Yan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT06030
| | - Corey D. Acker
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT06030
| | - Valentina Biasci
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino50019, Italy
| | - Giuliana Judge
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT06030
| | - Alexa Monroe
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT06030
| | - Leonardo Sacconi
- Institute of Clinical Physiology, National Research Council, Florence50139, Italy
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University of Freiburg, Freiburg79110, Germany
| | - Leslie M. Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT06030
| |
Collapse
|
7
|
Dotsenko VV, Varzieva EА. Synthesis of 6-(aryldiazenyl)-4H-chromene derivatives (microreview). Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Katariya KD, Nakum KJ, Soni R, Soman SS, Nada S, Hagar M. Coumarin Schiff base derivatives: Synthesis, mesomorphic properties, photophysical properties and DFT studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Fabitha K, Arya CG, Chandrakanth M, Banothu J. Green chemistry approach: sodium fluoride-catalyzed highly efficient microwave irradiation-assisted synthesis of substituted chromene derivatives in aqueous medium. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Dotsenko VV, Varzieva EA, Buriy DS, Aksenov NA, Aksenova IV. First Synthesis of 2-Amino-5-hydroxy-4H-chromene-3-carbonitriles from 4-(2-Pyridylazo)resorcinol. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
4-(2-Pyridylazo)resorcinol (PAR) sodium salt reacts with aromatic aldehydes and malononitrile in aqueous ethanol to form 2-amino-4-aryl-5-hydroxy-6-(2-pyridylazo)-4H-chromene-3-carbonitriles.
Collapse
|
11
|
Experimental and theoretical spectroscopic characterization, Hirshfield surface analysis, TD-DFT calculation, and nonlinear optical properties of (E)-1-[(2,4,6tribromophenyl)diazenyl]-naphthalen-2-ol azo dye. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Targeting the interplay between MMP-2, CA II and VEGFR-2 via new sulfonamide-tethered isomeric triazole hybrids; Microwave-assisted synthesis, computational studies and evaluation. Bioorg Chem 2022; 124:105816. [DOI: 10.1016/j.bioorg.2022.105816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022]
|
13
|
Tupychak MA, Finiuk NS, Stoika RS, Martyak RL, Pokhodylo NT. Design, Synthesis and In Vitro Anticancer Activity of Benzo[c]chromen-6-one -linked 1,2,3-Triazole. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220124112740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The 1,2,3-triazole hybrids and conjugates containing natural or related compounds motif demonstrate diverse biological activities, including anticancer, antimicrobial, anti-tubercular, antiviral, antidiabetic, antimalarial, anti-leishmanial, and neuroprotective ones. Among a wide range of pharmacological applications, considerable attention is paid to the study of anticancer activity. In anticancer research, combining of 1,2,3-triazoles with other motifs, previously demonstrating antiproliferative activity into one hybrid molecule, is a common strategy for the creation of new bioactive molecules. The CuAAC (copper-catalyzed azide–alkyne cycloaddition) is a very convenient reaction for the rapid construction of drug-like 1,2,3-triazoles at room temperature in a short time.
Methods:
Based on the pharmacophore strategy, a virtual combinatorial library of benzo[c]chromen-6-one -linked 1,2,3-triazole derivatives was designed and lead-likeness and molecular analysis were performed. Selected compounds were synthesized via CuAAC click reaction and the chemical structures of all new 1,2,3-triazole hybrids were proved by 1H, 13C NMR, MS and elemental analyses. Their anti-cancer activity in the human cancer cell lines was evaluated using the MTT assay.
Results:
A virtual in silico screening of novel benzo[c]chromen-6-one -linked 1,2,3-triazoles was carried out in order to discover potential antitumor agents. The synthesis of promising compounds was carried out via СuAAC reaction, and their antineoplastic action was studied on human tumor cells of HL-60, HCT116, HCT116 p53-/-, Skov3, U251, MDA231 lines. Their cytotoxic effect towards pseudo-normal human cells of HaCaT line was also evaluated. 2-((1H-1,2,3-triazol-4-yl)methoxy)-6H-benzo[c]chromen-6-one (4c) with pyridin-3-yl substituent demonstrated the highest antiproliferative action in vitro (IC50 79.5 μM) towards human leukemia cells of HL-60 line, while all tested compounds at >100 μM concentration were tolerant for non-tumor human keratinocytes of HaCaT line.
Conclusion:
A novel benzo[c]chromen-6-one -linked 1,2,3-triazoles exhibiting promising in vitro anti-cancer activity and low toxicity were designed. This study suggests new scaffolds for the development of anti-cancer drugs, which could be easily further optimized via the convenient synthetic procedure.
Collapse
Affiliation(s)
- Mykola A. Tupychak
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, Lviv 79005, Ukraine
| | - Nataliya S. Finiuk
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, Lviv 79005, Ukraine
| | - Rostyslav S. Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov St., 14/16., 79005 Lviv, Ukraine
| | - Roman L. Martyak
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, Lviv 79005, Ukraine
| | - Nazariy T. Pokhodylo
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, Lviv 79005, Ukraine
| |
Collapse
|
14
|
Reddy GG, Reddy CVR, Reddy BS. Water Mediated One-Pot, Stepwise Green Synthesis, Anti-Inflammatory and Analgesic Activities of (3-Amino-1-Phenyl-1H-Benzo[f]Chromen-2-yl) (1H-Indol-3-yl) Methanone Catalysed by L-Proline. Med Chem 2021; 18:810-819. [PMID: 34951578 DOI: 10.2174/1573406418666211224125310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022]
Abstract
AIM The reactions were carried out by one pot three-component synthesis, 3-cyanoacetylindole (1) on reaction with aromatic aldehydes (2) and β-naphthol (3) in an aqueous medium in presence of L-proline as a catalyst under reflux for 30 min, resulted (3-amino-1-phenyl-1H-benzo[f]chromen-2-yl) (1H-indol-3-yl)methanone (4). The method has many advantages like short reaction times, good yields and simple workup procedure besides being green in nature. Pharmacological evaluation of title compounds was done for anti-inflammatory and analgesic activities. Anti-inflammatory activity was carried carrageenan-induced paw edema model in which indomethacin was used as standard and analgesic activity was evaluated by eddy's hot plate method using diclofenac as standard drug. BACKGROUND Benzopyrans or chromenes are an important class of heterocyclic compounds due to their broad spectrum of biological activity and a wide range of applications in medicinal chemistry. The chromene moiety is found in various natural products with interesting biological properties. Chromenes constitute the basic backbone of various types of polyphenols and are widely found in alkaloids, tocopherols, flavonoids and anthocyanins. Indoles are omnipresent in various bioactive compounds like alkaloids, agrochemicals and pharmaceuticals. OBJECTIVE To synthesize one-pot stepwise Green synthesis, anti-inflammatory and analgesic activities of 3-amino-1-phenyl-1H-benzo[f]chromen-2-yl) (1H-indol-3-yl)methanones Methods: The acute anti-inflammatory effect was evaluated by carrageenan-induced mice paw edema (Ma Rachchh et al., 2011). Edema was induced by injecting carrageenan (1% w/v, 0.1 ml) in the right hind paw of mice. The test compounds 1-12, indomethacin (10 mg/kg) and the vehicle were administered orally one hour before injection of carrageenan. Paw volume was measured with digital plethysmometer at 0, 30, 60, 90, 120 min after injection. Percentage increase =A-B/ A *100 Results: Carrageenan Induced paw edema model was used for Anti-inflammatory activity in which animals treated with standard (indomethacin) and test compounds showed a significant decrease in the paw edema. Analgesic activity was estimated by using Eddy's hot plate method; animals were treated with standard (diclofenac) and test compounds showed a significant increase in the reaction time. CONCLUSION A green, One-pot, step-wise and three-component synthesis of 3-amino-1-phenyl-1H-benzo[f]chromen-2-yl) (1H-indol-3-yl) methanone was achieved by using water as a solvent, L-proline as catalyst under reflux conditions. The reactions were carried out in eco-friendly conditions with shorter reaction times, easier workup and high yields. Anti-inflammatory activity was evaluated by carrageenan-induced paw edema model where significant anti-inflammatory activity is shown by all the test compounds (4a-l) when compared to standard drug. Analgesic activity was studied by Eddy's Hot plate method and Test compounds 4e, 4f, 4h, 4i, 4j, 4k, 4l showed significant activities when compared to the reference drug.
Collapse
Affiliation(s)
- G Ganga Reddy
- Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad, India
| | | | - B Srinivasa Reddy
- Department of Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, India
| |
Collapse
|
15
|
KARAKAYA İ. Synthesis and characterization of azobenzene derived from 8-aminoquinoline in aqueous media. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.1012453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|