1
|
Al-Lami RSS, Al-Hilfy JHY. Role of Interleukins-8, -17 and -22 in Iraqi postmenopausal women with Osteoporosis. Cytokine 2025; 187:156853. [PMID: 39787824 DOI: 10.1016/j.cyto.2024.156853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVES Osteoporosis (OP) is a systemic skeletal disease characterized by low bone mineral density and deterioration of bone architecture, resulting in bone strength reduction and increased fracture susceptibility. Estrogen deficiency in post-menopausal women is possibly responsible for the instability between bone formation and resorption, which is managed by specific osteoclastogenic cytokines that may be leading to resorption. This study aims to estimation of the concentrations of interleukins -8, -17, -22, beside to certain parameters in blood serum and explained their roles in the development of osteoporosis pathogenicity in postmenopausal women. MATERIALS AND METHODS A case-control study included 108 Iraqi postmenopausal women participants their ages ranged between 45 and 70 years. All participants subjected to the DEXA scan, 58 samples were osteoporotic patients, whereas 50 were healthy controls. Blood samples collected from all participants in order to assess the levels of interleukins -8, -17, -22, CBC, CRP, RF, and ACPA. RESULTS The concentrations of IL-8, -17, -22, ESR, PLT, CRP, RF and ACPA exhibited a positive correlation with OP development. Conversely, WBC and HGB concentrations showed a negative association with osteoporosis. CONCLUSION A remarkable relationship was obtained between the values of IL-8, 17, -22, CRP, RF, ACPA, ESR, PLT and osteoporosis but in contrary with WBCs and HGB. IL-8, -17, and - 22 can be linked to specific inflammatory diseases associated with the postmenopausal period, may act as one of the main biomarkers for osteoporosis due to their ability to stimulate osteoclastogenesis and bone resorption, and may be considered potential prognostic factors for osteoporosis.
Collapse
Affiliation(s)
- Reem Salim Sultan Al-Lami
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq; Department of Biology, College of Science for women, University of Baghdad, Baghdad, Iraq.
| | | |
Collapse
|
2
|
Zhu HN, Guo YF, Lin Y, Sun ZC, Zhu X, Li Y. Radiomics analysis of thoracic vertebral bone marrow microenvironment changes before bone metastasis of breast cancer based on chest CT. J Bone Oncol 2025; 50:100653. [PMID: 39712652 PMCID: PMC11655691 DOI: 10.1016/j.jbo.2024.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Bone metastasis from breast cancer significantly elevates patient morbidity and mortality, making early detection crucial for improving outcomes. This study utilizes radiomics to analyze changes in the thoracic vertebral bone marrow microenvironment from chest computerized tomography (CT) images prior to bone metastasis in breast cancer, and constructs a model to predict metastasis. METHODS This study retrospectively gathered data from breast cancer patients who were diagnosed and continuously monitored for five years from January 2013 to September 2023. Radiomic features were extracted from the bone marrow of thoracic vertebrae on non-contrast chest CT scans. Multiple machine learning algorithms were utilized to construct various radiomics models for predicting the risk of bone metastasis, and the model with optimal performance was integrated with clinical features to develop a nomogram. The effectiveness of this combined model was assessed through receiver operating characteristic (ROC) analysis as well as decision curve analysis (DCA). RESULTS The study included a total of 106 patients diagnosed with breast cancer, among whom 37 developed bone metastases within five years. The radiomics model's area under the curve (AUC) for the test set, calculated using logistic regression, is 0.929, demonstrating superior predictive performance compared to alternative machine learning models. Furthermore, DCA demonstrated the potential of radiomics models in clinical application, with a greater clinical benefit in predicting bone metastasis than clinical model and nomogram. CONCLUSION CT-based radiomics can capture subtle changes in the thoracic vertebral bone marrow before breast cancer bone metastasis, offering a predictive tool for early detection of bone metastasis in breast cancer.
Collapse
Affiliation(s)
- Hao-Nan Zhu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yi-Fan Guo
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - YingMin Lin
- The Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhi-Chao Sun
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xi Zhu
- Department of Radiology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou, University, Yangzhou, Jiangsu, China
| | - YuanZhe Li
- Center of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
Reyes Soto G, Miranda-Galván V, Uribe-Uribe N, Escobar-Valderrama JM, Alanis-Mendizabal J, Medina-Velázquez LA, Garcia A, Torres Villalobos G, Díaz-Martínez F, Montiel de la Rosa P, Bravo-Reyna C, Cervantes Zentella AG, Vanegas Cerna GJ, Nikolenko V, Cherubin T, Rosario Rosario A, Castillo-Rangel C, Furcal Aybar MA, Wisam Alsaed L, Encarnacion Ramirez MDJ. Standardization of a Model of Vertebral Metastasis of Breast Cancer in CD1/Nu/Nu Mice. Cureus 2025; 17:e77291. [PMID: 39931605 PMCID: PMC11809943 DOI: 10.7759/cureus.77291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2025] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION Breast cancer is the leading cause of cancer-related death in Mexico, with high mortality associated with spinal bone metastasis. We propose to standardize a murine model of bone metastasis to study and understand the tumor microenvironment. MATERIALS AND METHODS An experimental, prospective, longitudinal study was conducted using 18 CD1/Nu/Nu 30g nude mice. Two cell lines, MCF-7 and 4T1, were inoculated, clinical follow-up was performed, and biopsy samples were obtained for histopathological evaluation. RESULTS Histopathological evaluation of models inoculated with the MCF-7 cell line showed no tumor development, while inoculation with the 4T1 cell line resulted in tumor development, as evidenced by PET-CT and histopathology, using 5,000 and 1,000 cells, respectively. CONCLUSIONS The use of this model is proposed for studying the clinical, molecular, and prognostic aspects of breast cancer progression by inoculating 1,000 cells of the 4T1 cell line.
Collapse
Affiliation(s)
| | - Vladimir Miranda-Galván
- Experimental Surgery, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | - Norma Uribe-Uribe
- Pathology, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | | | - Jorge Alanis-Mendizabal
- Experimental Surgery, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | | | - Alejandro Garcia
- Biochemistry, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | - Gonzalo Torres Villalobos
- Experimental Surgery, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | - Fabian Díaz-Martínez
- Physiology and Cell Development, Instituto Nacional De Perinatología, Mexico City, MEX
| | - Paola Montiel de la Rosa
- Experimental Surgery, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | - Carlos Bravo-Reyna
- Experimental Surgery, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | | | | | - Vladimir Nikolenko
- Human Anatomy and Histology, N.V. Sklifosovskiy Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, RUS
| | | | | | - Carlos Castillo-Rangel
- Neurosurgery, Hospital Regional 1° De Octubre, Instituto De Seguridad Y Servicios Sociales de Los Trabajadores Del Estado, Mexico City, MEX
| | - Mario Antonio Furcal Aybar
- Oncological Surgery, Instituto Nacional Del Cáncer Rosa Emilia Sánchez Pérez De Tavares (INCART), Santo Domingo, DOM
| | | | - Manuel De Jesus Encarnacion Ramirez
- Neurosurgery, Russian People's Friendship University, Moscow, RUS
- Human Anatomy and Histology, N.V. Sklifosovskiy Institute of Clinical Medicine, Moscow, RUS
| |
Collapse
|
4
|
Song MY, Zhao L, Huang WJ, Cui MM, Liu YX, Wang RT, Zhang X. Preoperative platelet distribution width predicts bone metastasis in patients with breast cancer. BMC Cancer 2024; 24:1066. [PMID: 39210343 PMCID: PMC11360324 DOI: 10.1186/s12885-024-12837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE Bone metastases occur in 50-70% of patients with breast cancer (BC) and result in high mortality. Platelet distribution width (PDW), a commonly used parameter of activated platelets, has been associated with a poor prognosis in BC. We aim to investigate the prognostic role of PDW for bone metastasis in BC patients. METHODS 515 patients who received BC surgery in the Harbin Medical University Cancer Hospital from July 1, 2016, to December 31, 2017, were reviewed. Patients' characteristics and platelet indices upon enrollment in this study were collected. The Kaplan-Meier method was used to estimate the 5-year bone metastasis incidence. The univariate and multivariate Cox regression analyses were utilized to identify risk factors associated with bone metastasis. RESULTS The patients with bone metastases exhibited lower PDW levels than the patients without bone metastases. Moreover, decreased PDW was significantly correlated with histologic type, multifocal disease, and lymph node status. In addition, the patients with reduced PDW levels were more likely to develop bone metastasis. Multivariate analysis showed that PDW was an independent predictor for bone metastasis. CONCLUSION PDW is an independent predictor of bone metastasis in BC. Further research is warranted.
Collapse
Affiliation(s)
- Mei-Yue Song
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Lin Zhao
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Wen-Juan Huang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Ming-Ming Cui
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Yu-Xi Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Rui-Tao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China.
| | - Xin Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
5
|
Dawalibi A, Alosaimi AA, Mohammad KS. Balancing the Scales: The Dual Role of Interleukins in Bone Metastatic Microenvironments. Int J Mol Sci 2024; 25:8163. [PMID: 39125732 PMCID: PMC11311339 DOI: 10.3390/ijms25158163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Bone metastases, a common and debilitating consequence of advanced cancers, involve a complex interplay between malignant cells and the bone microenvironment. Central to this interaction are interleukins (ILs), a group of cytokines with critical roles in immune modulation and inflammation. This review explores the dualistic nature of pro-inflammatory and anti-inflammatory interleukins in bone metastases, emphasizing their molecular mechanisms, pathological impacts, and therapeutic potential. Pro-inflammatory interleukins, such as IL-1, IL-6, and IL-8, have been identified as key drivers in promoting osteoclastogenesis, tumor proliferation, and angiogenesis. These cytokines create a favorable environment for cancer cell survival and bone degradation, contributing to the progression of metastatic lesions. Conversely, anti-inflammatory interleukins, including IL-4, IL-10, and IL-13, exhibit protective roles by modulating immune responses and inhibiting osteoclast activity. Understanding these opposing effects is crucial for developing targeted therapies aimed at disrupting the pathological processes in bone metastases. Key signaling pathways, including NF-κB, JAK/STAT, and MAPK, mediate the actions of these interleukins, influencing tumor cell survival, immune cell recruitment, and bone remodeling. Targeting these pathways presents promising therapeutic avenues. Current treatment strategies, such as the use of denosumab, tocilizumab, and emerging agents like bimekizumab and ANV419, highlight the potential of interleukin-targeted therapies in mitigating bone metastases. However, challenges such as therapeutic resistance, side effects, and long-term efficacy remain significant hurdles. This review also addresses the potential of interleukins as diagnostic and prognostic biomarkers, offering insights into patient stratification and personalized treatment approaches. Interleukins have multifaceted roles that depend on the context, including the environment, cell types, and cellular interactions. Despite substantial progress, gaps in research persist, particularly regarding the precise mechanisms by which interleukins influence the bone metastatic niche and their broader clinical implications. While not exhaustive, this overview underscores the critical roles of interleukins in bone metastases and highlights the need for continued research to fully elucidate their complex interactions and therapeutic potential. Addressing these gaps will be essential for advancing our understanding and treatment of bone metastases in cancer patients.
Collapse
Affiliation(s)
- Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Amal Ahmed Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
6
|
Arakil N, Akhund SA, Elaasser B, Mohammad KS. Intersecting Paths: Unraveling the Complex Journey of Cancer to Bone Metastasis. Biomedicines 2024; 12:1075. [PMID: 38791037 PMCID: PMC11117796 DOI: 10.3390/biomedicines12051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The phenomenon of bone metastases presents a significant challenge within the context of advanced cancer treatments, particularly pertaining to breast, prostate, and lung cancers. These metastatic occurrences stem from the dissemination of cancerous cells into the bone, thereby interrupting the equilibrium between osteoblasts and osteoclasts. Such disruption results in skeletal complications, adversely affecting patient morbidity and quality of life. This review discusses the intricate interplay between cancer cells and the bone microenvironment, positing the bone not merely as a passive recipient of metastatic cells but as an active contributor to cancer progression through its distinctive biochemical and cellular makeup. A thorough examination of bone structure and the dynamics of bone remodeling is undertaken, elucidating how metastatic cancer cells exploit these processes. This review explores the genetic and molecular pathways that underpin the onset and development of bone metastases. Particular emphasis is placed on the roles of cytokines and growth factors in facilitating osteoclastogenesis and influencing osteoblast activity. Additionally, this paper offers a meticulous critique of current diagnostic methodologies, ranging from conventional radiography to advanced molecular imaging techniques, and discusses the implications of a nuanced understanding of bone metastasis biology for therapeutic intervention. This includes the development of targeted therapies and strategies for managing bone pain and other skeletal-related events. Moreover, this review underscores the imperative of ongoing research efforts aimed at identifying novel therapeutic targets and refining management approaches for bone metastases. It advocates for a multidisciplinary strategy that integrates advancements in medical oncology and radiology with insights derived from molecular biology and genetics, to enhance prognostic outcomes and the quality of life for patients afflicted by this debilitating condition. In summary, bone metastases constitute a complex issue that demands a comprehensive and informed approach to treatment. This article contributes to the ongoing discourse by consolidating existing knowledge and identifying avenues for future investigation, with the overarching objective of ameliorating patient care in the domain of oncology.
Collapse
Affiliation(s)
| | | | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (N.A.); (S.A.A.); (B.E.)
| |
Collapse
|
7
|
Zhou Y, Li C, Jiang S, Niu F, Cui F, Zhao Y, Wei D, Ma H, Li Y. Diagnosis of SPECT/CT bone imaging combined with two serum examinations in patients with bone metastases from pulmonary cancer. Clin Transl Oncol 2024; 26:147-154. [PMID: 37269491 DOI: 10.1007/s12094-023-03231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE To study the clinical diagnostic value of SPECT/CT bone imaging combined with two serum examinations in patients with bone metastases from pulmonary cancer. METHODS The clinical data of 120 patients consistent with pulmonary cancer admitted to the First Affiliated Hospital of Hebei North University from March 2019 to December 2019 were selected for retrospective analysis, and they were divided into the bone metastasis group (n = 58) and non-bone metastasis group (n = 62) according to comprehensive evaluation result of X-ray, CT, MRI and clinical follow-up. The CT values of patients were obtained by SPECT/CT bone imaging to compare serum levels of ALP (alkaline phosphatase belongs to phosphoric monoester hydrolases, as a specific phosphatase, mainly in body tissues and body fluid) and BAP (bone alkaline phosphatase is formed by different modification and processing of alkaline phosphatase, and is mainly released by osteoblasts) and CT values of patients in both groups, using receiver operating characteristic (ROC) curve to evaluate the diagnostic efficacy of single detection and combined detection. RESULTS SPECT/CT bone imaging in patients with bone metastasis from pulmonary cancer showed abnormal radioactive accumulation in spine, pelvis and bilateral ribs. Serum ALP, BAP and CT values in bone metastasis group were overtly higher than the non-bone metastasis group (P < 0.001). Logistic regression analysis showed that serum ALP, BAP and CT value were independent risk factors for bone metastasis from pulmonary cancer. The AUC value and Youden index of combined diagnosis were higher than those of single diagnosis. CONCLUSION SPECT/CT bone imaging combined with serum detection of ALP and BAP in patients with pulmonary cancer is helpful for early diagnosis of bone metastasis, which provides more basis for the formulation and selection of clinical treatment options.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China.
| | - Chuangui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| | - Shasha Jiang
- Department of Nuclear Medicine, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| | - Faliang Niu
- Department of Nuclear Medicine, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| | - Feng Cui
- Department of Nuclear Medicine, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| | - Yusen Zhao
- Department of Medical Imaging, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Dong Wei
- Department of Thoracic Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Hongwei Ma
- Department of Nuclear Medicine, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| | - Yan Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| |
Collapse
|
8
|
Miao S, Jia H, Huang W, Cheng K, Zhou W, Wang R. Subcutaneous fat predicts bone metastasis in breast cancer: A novel multimodality-based deep learning model. Cancer Biomark 2024; 39:171-185. [PMID: 38043007 PMCID: PMC11091603 DOI: 10.3233/cbm-230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/24/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVES This study explores a deep learning (DL) approach to predicting bone metastases in breast cancer (BC) patients using clinical information, such as the fat index, and features like Computed Tomography (CT) images. METHODS CT imaging data and clinical information were collected from 431 BC patients who underwent radical surgical resection at Harbin Medical University Cancer Hospital. The area of muscle and adipose tissue was obtained from CT images at the level of the eleventh thoracic vertebra. The corresponding histograms of oriented gradients (HOG) and local binary pattern (LBP) features were extracted from the CT images, and the network features were derived from the LBP and HOG features as well as the CT images through deep learning (DL). The combination of network features with clinical information was utilized to predict bone metastases in BC patients using the Gradient Boosting Decision Tree (GBDT) algorithm. Regularized Cox regression models were employed to identify independent prognostic factors for bone metastasis. RESULTS The combination of clinical information and network features extracted from LBP features, HOG features, and CT images using a convolutional neural network (CNN) yielded the best performance, achieving an AUC of 0.922 (95% confidence interval [CI]: 0.843-0.964, P< 0.01). Regularized Cox regression results indicated that the subcutaneous fat index was an independent prognostic factor for bone metastasis in breast cancer (BC). CONCLUSION Subcutaneous fat index could predict bone metastasis in BC patients. Deep learning multimodal algorithm demonstrates superior performance in assessing bone metastases in BC patients.
Collapse
Affiliation(s)
- Shidi Miao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Haobo Jia
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Wenjuan Huang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang, China
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ke Cheng
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Wenjin Zhou
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Ruitao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Hu Y, Mao L, Wang M, Li Z, Li M, Wang C, Ji L, Zeng H, Zhang X. New insights into breast microcalcification for poor prognosis: NACT cohort and bone metastasis evaluation cohort. J Cancer Res Clin Oncol 2023; 149:7285-7297. [PMID: 36917189 DOI: 10.1007/s00432-023-04668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023]
Abstract
OBJECTIVES The study aimed to analyze the poor prognosis of microcalcification in breast cancer (BC), including the pathological complete response (pCR) to neoadjuvant chemotherapy (NACT) and the risk of bone metastases. MATERIALS AND METHODS 313 breast cancer patients received NACT to evaluate pCR and 1182 patients from a multicenter database to assess bone metastases were retrospectively included. Two groups were divided according to the presence or absence of mammography microcalcification. Clinical data, image characteristics, neoadjuvant treatment response, bone involvement, and follow-up information were recorded. The pCR and bone metastases were compared between subgroups using the Mann-Whitney and χ2 tests and logistic regression, respectively. RESULTS Mammographic microcalcification was associated with a lower pCR than uncalcified BC in the NACT cohort (20.6% vs 31.6%, P = 0.029). Univariate and multivariate analysis suggested that calcification was a risk factor for poor NACT response [OR = 1.780, 95%CI (1.065-2.974), P = 0.028], [OR = 2.352, 95%CI (1.186-4.667), P = 0.014]. Microcalcification was more likely to be necrosis on MRI than those without microcalcification (53.0% vs 31.7%, P < 0.001), multivariate analysis indicated that tumor necrosis was also a risk factor for poor NACT response [OR = 2.325, 95%CI (1.100-4.911), P = 0.027]. Age, menopausal status, breast density, mass, molecular, and pathology type were not significantly associated with non-pCR risk assessment. In a multicenter cohort of 1182 patients with pathologically confirmed BC, those with microcalcifications had a higher proportion of bone metastases compared to non-calcified BC (11.6% vs 4.9%, P < 0.001). Univariate and multivariate analysis showed that microcalcification was an independent risk factor for bone metastasis [OR = 2.550, 95%CI (1.620-4.012), P < 0.001], [OR = 2.268(1.263-4.071), P = 0.006)]. Osteolytic bone metastases predominated but there was no statistical difference between the two groups (78.9% vs 60.7%, P = 0.099). Calcified BC was mainly involved in axial bone, but was more likely to involve the whole-body bone than non-calcified BC (33.8% vs 10.7%, P = 0.021). CONCLUSION This study provides important insights into the poor prognosis of microcalcification, not only in terms of poor response to NACT but also the risk factor of bone metastases.
Collapse
Affiliation(s)
- Yangling Hu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lijuan Mao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengyi Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenqiu Li
- Department of Radiology, The Panyu Fifth Hospital, Guangzhou, China
| | - Meizhi Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chaoyang Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lin Ji
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Zeng
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiaoling Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Łabędź W, Przybyla A, Zimna A, Dąbrowski M, Kubaszewski Ł. The Role of Cytokines in the Metastasis of Solid Tumors to the Spine: Systematic Review. Int J Mol Sci 2023; 24:ijms24043785. [PMID: 36835198 PMCID: PMC9962202 DOI: 10.3390/ijms24043785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Although many studies have investigated the role of cytokines in bone metastases, our knowledge of their function in spine metastasis is limited. Therefore, we performed a systematic review to map the available evidence on the involvement of cytokines in spine metastasis in solid tumors. A PubMed search identified 211 articles demonstrating a functional link between cytokines/cytokine receptors and bone metastases, including six articles confirming the role of cytokines/cytokine receptors in spine metastases. A total of 68 cytokines/cytokine receptors were identified to mediate bone metastases; 9 (mostly chemokines) played a role in spine metastases: CXC motif chemokine ligand (CXCL) 5, CXCL12, CXC motif chemokine receptor (CXCR) 4, CXCR6, interleukin (IL) 10 in prostate cancer, CX3C motif chemokine ligand (CX3CL) 1 and CX3C motif chemokine receptor (CX3CR) 1 in liver cancer, CC motif chemokine ligand (CCL) 2 in breast cancer, and transforming growth factor (TGF) β in skin cancer. Except for CXCR6, all cytokines/cytokine receptors were shown to operate in the spine, with CX3CL1, CX3CR1, IL10, CCL2, CXCL12, and CXCR4 mediating bone marrow colonization, CXCL5 and TGFβ promoting tumor cell proliferation, and TGFβ additionally driving bone remodeling. The number of cytokines/cytokine receptors confirmed to mediate spinal metastasis is low compared with the vast spectrum of cytokines/cytokine receptors participating in other parts of the skeleton. Therefore, further research is needed, including validation of the role of cytokines mediating metastases to other bones, to precisely address the unmet clinical need associated with spine metastases.
Collapse
Affiliation(s)
- Wojciech Łabędź
- Adult Spine Orthopaedics Department, Poznan University of Medical Sciences, 61-545 Poznan, Poland
- Correspondence: (W.Ł.); (M.D.)
| | - Anna Przybyla
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Agnieszka Zimna
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Mikołaj Dąbrowski
- Adult Spine Orthopaedics Department, Poznan University of Medical Sciences, 61-545 Poznan, Poland
- Correspondence: (W.Ł.); (M.D.)
| | - Łukasz Kubaszewski
- Adult Spine Orthopaedics Department, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| |
Collapse
|
11
|
Yang W, Pan Q, Huang F, Hu H, Shao Z. Research progress of bone metastases: From disease recognition to clinical practice. Front Oncol 2023; 12:1105745. [PMID: 36761418 PMCID: PMC9905420 DOI: 10.3389/fonc.2022.1105745] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
Bone metastases, as one of the common types of metastatic tumors, have a great impact on the survival period and quality of life of patients. Bone metastases are usually characterized by bone destruction. Skeletal related events caused by bone destruction often lead to pain, pathological fractures and even paralysis. In this review, we provide a detailed explanation of bone metastases from the epidemiology, clinical features, pathogenesis, and recently developed clinical treatment viewpoints. We concluded that the incidence of bone metastases is increasing gradually, with serious clinical symptoms, complex pathogenesis and diverse clinical treatment. Tumor cells, immune cells, osteoblasts/osteoclasts and other cells as well as cytokines and enzymes all play a key role in the pathogenesis of bone metastases. We believe that the future treatment of bone metastases will be diversified and comprehensive. Some advanced technologies, such as nanomedicine, could be used for treatment, but this depends on understanding how disease occurs. With the development of treatment, the survival time and quality of life of patients will be improved.
Collapse
Affiliation(s)
| | | | | | - Hongzhi Hu
- *Correspondence: Hongzhi Hu, ; Zengwu Shao,
| | | |
Collapse
|
12
|
Yang P, Zhou X, Xie Y. Cytotoxic Effects of the Benzophenanthridine Alkaloids Isolated from Eomecon chionantha on MCF-7 Cells and Its Potential Mechanism. Chem Biodivers 2023; 20:e202200871. [PMID: 36529680 DOI: 10.1002/cbdv.202200871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Seven benzophenanthridine alkaloids (1-7) were obtained from the 75 % EtOH extract of Eomecon chionantha, and exhibited moderate biological activity against MCF-7 cells. 8,12-dimethoxysanguinarine (1, DSG) strongly decreased the cell viability of MCF-7 cell lines with an IC50 value of 7.12 μΜ. Based on RNA-sequencing measure and KEGG pathway enrichment analysis results, the significant differentially expressed genes (DEGs) were associated with Pathways in Cancer and PI3 K-AKT signaling pathways in DSG treated group. The potential molecular regulatory mechanisms underlying the effect of DSG induces necroptosis in MCF-7 cells via molecular docking, TEM analysis, and ROS measurement. Besides, DEGs of bone metastasis-related genes such as PI3 K, IGF1R, Notch, and Wnt mRNA were significantly downregulated in the DSG-treated group on MCF-7 cells. DSG might be selected as a bone metastasis proteins inhibitor of IL-1β, IL-6, IκBα, IGF1R, Notch, NF-κB, PTHrp, PI3 K, PKB/AKT, PTEN, TNF-α, and Wnt via molecular docking. DSG suppressed bone metastasis by regulating the expression levels of IL-1β, IL-6, PTH, CROSS, TP1NP, and OSTEOC on MCF-7 cells using ELISA measurement. Thus, our findings reveal that DSG could be a lead compound for suppressing tumor cells to bone metastasis in breast cancer cells.
Collapse
Affiliation(s)
- Peng Yang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, P. R. China
| | - Xi Zhou
- School of Life Sciences, Central South University, Changsha, 410008, P. R. China
| | - Yang Xie
- Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| |
Collapse
|
13
|
Wang W, Huang WJ, Liu PP, Fu S, Zhang ML, Zhang X, Wang RT, Huang YX. Lower subcutaneous fat index predicts bone metastasis in breast cancer. Cancer Biomark 2023; 38:121-130. [PMID: 37545220 DOI: 10.3233/cbm-230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Bone metastases affect 50% to 70% of breast cancer (BC) patients and have a high mortality rate. Adipose tissue loss plays a pivotal role in the progression of cancer. OBJECTIVE This study aims to evaluate the prognostic value of adipose tissue for bone metastasis in BC patients. METHODS 517 BC patients were studied retrospectively. Patients' characteristics before the surgery were collected. Quantitative measurements of the subcutaneous fat index (SFI) were performed at the level of the eleventh thoracic vertebra. In order to adjust for the heterogeneity between the low SFI and high SFI groups, propensity score matching (PSM) was used. The Kaplan-Meier method was used to estimate the 5-year bone metastatic incidence. The prognostic analysis was performed with the Cox regression models. RESULTS Compared with the patients without bone metastasis, the patients with bone metastasis had reduced SFI levels. In addition, Kaplan-Meier analysis revealed that patients with low SFI were more likely to develop bone metastases. The independent predictive value of SFI for bone metastases was confirmed by Cox regression analysis. The survival analysis was repeated after PSM with a 1:1 ratio, yielding similar results (P< 0.05). CONCLUSIONS SFI is an independent predictor of bone metastasis in BC patients.
Collapse
Affiliation(s)
- Wen Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wen-Juan Huang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ping-Ping Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuang Fu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Meng-Lin Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui-Tao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuan-Xi Huang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
14
|
Li JJ, Wang S, Guan ZN, Zhang JX, Zhan RX, Zhu JL. Anterior Gradient 2 is a Significant Prognostic Biomarker in Bone Metastasis of Breast Cancer. Pathol Oncol Res 2022; 28:1610538. [PMID: 36405393 PMCID: PMC9668893 DOI: 10.3389/pore.2022.1610538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
Background: The study aimed to detect DEGs associated with BRCA bone metastasis, filter prognosis biomarkers, and explore possible pathways. Methods: GSE175692 dataset was used to detect DEGs between BRCA bone metastatic cases and non-bone metastatic cases, followed by the construction of a PPI network among DEGs. The main module among the PPI network was then determined and pathway analysis on genes within the module was performed. Through performing Cox regression, Kaplan-Meier, nomogram, and ROC curve analyses using GSE175692 and GSE124647 datasets at the same time, the most significant prognostic biomarker was gradually filtered. Finally, important pathways associated with prognostic biomarkers were explored by GSEA analysis. Results: The 74 DEGs were detected between bone metastasis and non-bone metastasis groups. A total of 15 nodes were included in the main module among the whole PPI network and they mainly correlated with the IL-17 signaling pathway. We then performed Cox analysis on 15 genes using two datasets and only enrolled the genes with p < 0.05 in Cox analysis into the further analyses. Kaplan-Meier analyses using two datasets showed that the common biomarker AGR2 expression was related to the survival time of BRCA metastatic cases. Further, the nomogram determined the greatest contribution of AGR2 on the survival probability and the ROC curve revealed its optimal prognostic performance. More importantly, high expression of AGR2 prolonged the survival time of BRCA bone metastatic patients. These results all suggested the importance of AGR2 in metastatic BRCA. Finally, we performed the GSEA analysis and found that AGR2 was negatively related to IL-17 and NF-kβ signaling pathways. Conclusion: AGR2 was finally determined as the most important prognostic biomarker in BRCA bone metastasis, and it may play a vital role in cancer progression by regulating IL-17 and NF-kB signaling pathways.
Collapse
Affiliation(s)
- Jin-Jin Li
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Shuai Wang
- Department of Pathology, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Zhong-Ning Guan
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Jin-Xi Zhang
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Ri-Xin Zhan
- Department of Medical Record Management, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Jian-Long Zhu
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
- *Correspondence: Jian-Long Zhu,
| |
Collapse
|
15
|
Pauk M, Saito H, Hesse E, Taipaleenmäki H. Muscle and Bone Defects in Metastatic Disease. Curr Osteoporos Rep 2022; 20:273-289. [PMID: 35994202 PMCID: PMC9522697 DOI: 10.1007/s11914-022-00741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The present review addresses most recently identified mechanisms implicated in metastasis-induced bone resorption and muscle-wasting syndrome, known as cachexia. RECENT FINDINGS Metastatic disease in bone and soft tissues is often associated with skeletal muscle defects. Recent studies have identified a number of secreted molecules and extracellular vesicles that contribute to cancer cell growth and metastasis leading to bone destruction and muscle atrophy. In addition, alterations in muscle microenvironment including dysfunctions in hepatic and mitochondrial metabolism have been implicated in cancer-induced regeneration defect and muscle loss. Moreover, we review novel in vitro and animal models including promising new drug candidates for bone metastases and cancer cachexia. Preservation of bone health could be highly beneficial for maintaining muscle mass and function. Therefore, a better understanding of molecular pathways implicated in bone and muscle crosstalk in metastatic disease may provide new insights and identify new strategies to improve current anticancer therapeutics.
Collapse
Affiliation(s)
- Martina Pauk
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hiroaki Saito
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Eric Hesse
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany.
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
16
|
Baumann Z, Auf der Maur P, Bentires‐Alj M. Feed-forward loops between metastatic cancer cells and their microenvironment-the stage of escalation. EMBO Mol Med 2022; 14:e14283. [PMID: 35506376 PMCID: PMC9174884 DOI: 10.15252/emmm.202114283] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent cancer among women, and metastases in distant organs are the leading cause of the cancer-related deaths. While survival of early-stage breast cancer patients has increased dramatically, the 5-year survival rate of metastatic patients has barely improved in the last 20 years. Metastases can arise up to decades after primary tumor resection, hinting at microenvironmental factors influencing the sudden outgrowth of disseminated tumor cells (DTCs). This review summarizes how the environment of the most common metastatic sites (lung, liver, bone, brain) is influenced by the primary tumor and by the varying dormancy of DTCs, with a special focus on how established metastases persist and grow in distant organs due to feed-forward loops (FFLs). We discuss in detail the importance of FFL of cancer cells with their microenvironment including the secretome, interaction with specialized tissue-specific cells, nutrients/metabolites, and that novel therapies should target not only the cancer cells but also the tumor microenvironment, which are thick as thieves.
Collapse
Affiliation(s)
- Zora Baumann
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Priska Auf der Maur
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Mohamed Bentires‐Alj
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| |
Collapse
|
17
|
MicroRNAs: Emerging Regulators of Metastatic Bone Disease in Breast Cancer. Cancers (Basel) 2022; 14:cancers14030729. [PMID: 35158995 PMCID: PMC8833828 DOI: 10.3390/cancers14030729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Bone metastasis is a frequent complication in patients with advanced breast cancer. Once in the bone, cancer cells disrupt the tightly regulated cellular balance within the bone microenvironment, leading to excessive bone destruction and further tumor growth. Physiological and pathological interactions in the bone marrow are mediated by cell-cell contacts and secreted molecules that include soluble proteins as well as RNA molecules. MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally interfere with their target messenger RNA (mRNA) and subsequently reduce protein abundance. Since their discovery, miRNAs have been identified as critical regulators of physiological and pathological processes, including breast cancer and associated metastatic bone disease. Depending on their targets, miRNAs can exhibit pro-tumorigenic or anti-tumorigenic functions and serve as diagnostic and prognostic biomarkers. These properties have encouraged pre-clinical and clinical development programs to investigate miRNAs as biomarkers and therapeutic targets in various diseases, including metastatic cancers. In this review, we discuss the role of miRNAs in metastatic bone disease with a focus on breast cancer and the bone microenvironment and elaborate on their potential use for diagnostic and therapeutic purposes in metastatic bone disease and beyond.
Collapse
|
18
|
Guo Y, Gao X, An S, Li X, Pan L, Liu H, Liu J, Gao J, Zhao Z, Li G, Han Y, Li Y, Ji Z. Deletion of miR-15a inhibited glioma development via targeting Smad7 and inhibiting EMT pathway. Aging (Albany NY) 2021; 13:24339-24348. [PMID: 34775378 PMCID: PMC8610134 DOI: 10.18632/aging.203684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
In the present study, we found the expression of miR-15a-5p (miR-15a) was increased in glioma tissues, and we further explore the underlying mechanism of miR-15a in glioma progression. Microarray analysis used to identify the differentially expressed microRNAs (miRNAs) in glioma tissues. The expression of miR-15a in glioma tissues and cell lines was tested by qRT-PCR. Luciferase assay was used to determine the binding between miR-15a and Smad7. Wound healing and transwell assay were used to examine the role of miR-15a/Smad7 in SHG139 cells. Western blot was used to detect the protein level of Smad7 and epithelial-mesenchymal transition (EMT) markers. A tumor formation model in nude mice was established to measure the role of miR-15a in vivo. MiR-15a was significantly increased in glioma tissues and cells, which indicated a poor prognosis of glioma patients. MiR-15a mimics induced miR-15a level in SHG139 cells, and promoted the malignancy of SHG139 cells, while miR-15a inhibitor showed the opposite effects. Luciferase assay indicated that Smad7 was the direct target of miR-15a, and Smad7 was down-regulated in glioma tissues. Functional experiments revealed that miR-15a inhibitor inhibited the EMT pathway and the migration and invasion of glioma cells, but the silencing of Smad7 reversed the effects of miR-15a inhibitor in EMT pathway and glioma progression. Finally, we performed animal experiments to verify the role of miR-15a in vivo. Present study showed that deletion of miR-15a inhibited the activation of EMT signaling via targeting Smad7, thus suppressed the tumorigenesis and tumor growth of glioma.
Collapse
Affiliation(s)
- Yanfeng Guo
- Department of Neurosurgery, The First Hospital of Handan, Handan, Hebei Province, China
| | - Xiaopeng Gao
- Department of Neurosurgery, The First Hospital of Handan, Handan, Hebei Province, China
| | - Shien An
- Department of Neurosurgery, The First Hospital of Handan, Handan, Hebei Province, China
| | - Xin Li
- Department of Neurosurgery, The First Hospital of Handan, Handan, Hebei Province, China
| | - Lekun Pan
- Department of Neurosurgery, The First Hospital of Handan, Handan, Hebei Province, China
| | - Hongyan Liu
- Department of E.N.T, The First Hospital of Handan, Handan, Hebei Province, China
| | - Jixiang Liu
- Department of Neurosurgery, The First Hospital of Handan, Handan, Hebei Province, China
| | - Jianzhou Gao
- Department of Neurosurgery, The First Hospital of Handan, Handan, Hebei Province, China
| | - Zhihuang Zhao
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Gang Li
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yonggang Han
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yabin Li
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Zhisheng Ji
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| |
Collapse
|
19
|
Teng X, Yang T, Huang W, Li W, Zhou L, Wang Z, Feng Y, Zhang J, Yin X, Wang P, Li G, Yu H, Chen Z, Fan D. Bioinformatics analysis for the identification of key genes and long non-coding RNAs related to bone metastasis in breast cancer. Aging (Albany NY) 2021; 13:17302-17315. [PMID: 34226298 PMCID: PMC8312419 DOI: 10.18632/aging.203211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022]
Abstract
The molecular mechanism of bone metastasis in breast cancer is largely unknown. Herein, we aimed to identify the key genes and long non-coding RNAs (lncRNAs) related to the bone metastasis of breast cancer using a bioinformatics approach. We screened differentially expressed genes and lncRNAs between normal breast and breast cancer bone metastasis samples using the GSE66206 dataset from the Gene Expression Omnibus. We also constructed a differentially expressed lncRNA-mRNA interaction network and analyzed the node degrees to identify the driving genes. After finding potential pathogenic modules of breast cancer bone metastasis, we identified breast cancer bone metastasis-related modules and functional enrichment analysis of the genes and lncRNAs in the modules. Based on the above analysis, we constructed a differentially expressed lncRNA-mRNA network related to bone metastasis in breast cancer and identified core driver genes, including BNIP3 and the lncRNA RP11-317-J19.1. The role of core driver genes and lncRNAs in the network implies their biological functions in regulating bone development and remodeling. Thus, targeting the core driver genes and lncRNAs in the network may be a promising therapeutic strategy to manage bone metastasis.
Collapse
Affiliation(s)
- Xu Teng
- Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Tianshu Yang
- Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Wei Huang
- Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lin Zhou
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Zihang Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Yajuan Feng
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Jingyao Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xin Yin
- Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Pei Wang
- Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Gen Li
- Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Hefeng Yu
- Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|