1
|
Braun JL, Fajardo VA. Spaceflight increases sarcoplasmic reticulum Ca 2+ leak and this cannot be counteracted with BuOE treatment. NPJ Microgravity 2024; 10:78. [PMID: 39030182 PMCID: PMC11271499 DOI: 10.1038/s41526-024-00419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Spending time in a microgravity environment is known to cause significant skeletal muscle atrophy and weakness via muscle unloading, which can be partly attributed to Ca2+ dysregulation. The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump is responsible for bringing Ca2+ from the cytosol into its storage site, the sarcoplasmic reticulum (SR), at the expense of ATP. We have recently demonstrated that, in the soleus of space-flown mice, the Ca2+ uptake ability of the SERCA pump is severely impaired and this may be attributed to increases in reactive oxygen/nitrogen species (RONS), to which SERCA is highly susceptible. The purpose of this study was therefore to investigate whether treatment with the antioxidant, Manganese(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP5+ (BuOE), could attenuate muscle atrophy and SERCA dysfunction. We received soleus muscles from the rodent research 18 mission which had male mice housed on the international space station for 35 days and treated with either saline or BuOE. Spaceflight significantly reduced the soleus:body mass ratio and significantly increased SERCA's ionophore ratio, a measure of SR Ca2+ leak, and 4-HNE content (marker of RONS), none of which could be rescued by BuOE treatment. In conclusion, we find that spaceflight induces significant soleus muscle atrophy and SR Ca2+ leak that cannot be counteracted with BuOE treatment. Future work should investigate alternative therapeutics that are specifically aimed at increasing SERCA activation or reducing Ca2+ leak.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
2
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Weng HR. Emerging Molecular and Synaptic Targets for the Management of Chronic Pain Caused by Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:3602. [PMID: 38612414 PMCID: PMC11011483 DOI: 10.3390/ijms25073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1β, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1β, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1β and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| |
Collapse
|
4
|
Viatchenko-Karpinski V, Kong L, Weng HR. Deficient AMPK activity contributes to hyperexcitability in peripheral nociceptive sensory neurons and thermal hyperalgesia in lupus mice. PLoS One 2023; 18:e0288356. [PMID: 37440542 PMCID: PMC10343046 DOI: 10.1371/journal.pone.0288356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Patients with systemic lupus erythematosus (SLE) often suffer from chronic pain. Little is known about the peripheral mechanisms underlying the genesis of chronic pain induced by SLE. The aim of this study was to investigate whether and how membrane properties in nociceptive neurons in the dorsal root ganglions (DRGs) are altered by SLE. We found elevation of resting membrane potentials, smaller capacitances, lower action potential thresholds and rheobases in nociceptive neurons in the DRGs from MRL/lpr mice (an SLE mouse model) with thermal hyperalgesia. DRGs from MRL/lpr mice had increased protein expressions in TNFα, IL-1β, and phosphorylated ERK but suppressed AMPK activity, and no changes in sodium channel 1.7 protein expression. We showed that intraplantar injection of Compound C (an AMPK inhibitor) induced thermal hyperalgesia in normal mice while intraplantar injection of AICAR (an AMPK activator) reduced thermal hyperalgesia in MRL/Lpr mice. Upon inhibition of AMPK membrane properties in nociceptive neurons from normal control mice could be rapidly switched to those found in SLE mice with thermal hyperalgesia. Our study indicates that increased excitability in peripheral nociceptive sensory neurons contributes to the genesis of thermal hyperalgesia in mice with SLE, and AMPK regulates membrane properties in nociceptive sensory neurons as well as thermal hyperalgesia in mice with SLE. Our study provides a basis for targeting signaling pathways regulating membrane properties of peripheral nociceptive neurons as a means for conquering chronic pain caused by SLE.
Collapse
Affiliation(s)
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, United States of America
| | - Han-Rong Weng
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, United States of America
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, United States of America
| |
Collapse
|
5
|
Short-Term Mild Hypoxia Modulates Na,K-ATPase to Maintain Membrane Electrogenesis in Rat Skeletal Muscle. Int J Mol Sci 2022; 23:ijms231911869. [PMID: 36233169 PMCID: PMC9570130 DOI: 10.3390/ijms231911869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
The Na,K-ATPase plays an important role in adaptation to hypoxia. Prolonged hypoxia results in loss of skeletal muscle mass, structure, and performance. However, hypoxic preconditioning is known to protect against a variety of functional impairments. In this study, we tested the possibility of mild hypoxia to modulate the Na,K-ATPase and to improve skeletal muscle electrogenesis. The rats were subjected to simulated high-altitude (3000 m above sea level) hypobaric hypoxia (HH) for 3 h using a hypobaric chamber. Isolated diaphragm and soleus muscles were tested. In the diaphragm muscle, HH increased the α2 Na,K-ATPase isozyme electrogenic activity and stably hyperpolarized the extrajunctional membrane for 24 h. These changes were accompanied by a steady increase in the production of thiobarbituric acid reactive substances as well as a decrease in the serum level of endogenous ouabain, a specific ligand of the Na,K-ATPase. HH also increased the α2 Na,K-ATPase membrane abundance without changing its total protein content; the plasma membrane lipid-ordered phase did not change. In the soleus muscle, HH protected against disuse (hindlimb suspension) induced sarcolemmal depolarization. Considering that the Na,K-ATPase is critical for maintaining skeletal muscle electrogenesis and performance, these findings may have implications for countermeasures in disuse-induced pathology and hypoxic therapy.
Collapse
|
6
|
Chronic Ouabain Prevents Radiation-Induced Reduction in the α2 Na,K-ATPase Function in the Rat Diaphragm Muscle. Int J Mol Sci 2022; 23:ijms231810921. [PMID: 36142836 PMCID: PMC9505176 DOI: 10.3390/ijms231810921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
The damaging effect of ionizing radiation (IR) on skeletal muscle Na,K-ATPase is an open field of research. Considering a therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against the IR-induced disturbances of Na,K-ATPase function in rat diaphragm muscle that co-expresses the α1 and α2 isozymes of this protein. Male Wistar rats (n = 26) were subjected to 6-day injections of vehicle (0.9% NaCl) or ouabain (1 µg/kg/day). On the fourth day of injections, rats were exposed to one-time total-body X-ray irradiation (10 Gy), or a sham irradiation. The isolated muscles were studied 72 h post-irradiation. IR decreased the electrogenic contribution of the α2 Na,K-ATPase without affecting its protein content, thereby causing sarcolemma depolarization. IR increased serum concentrations of ouabain, IL-6, and corticosterone, decreased lipid peroxidation, and changed cellular redox status. Chronic ouabain administration prevented IR-induced depolarization and loss of the α2 Na,K-ATPase electrogenic contribution without changing its protein content. This was accompanied with an elevation of ouabain concentration in circulation and with the lack of IR-induced suppression of lipid peroxidation. Given the crucial role of Na,K-ATPase in skeletal muscle performance, these findings may have therapeutic implications as countermeasures for IR-induced muscle pathology.
Collapse
|
7
|
Metabolic Pathways and Ion Channels Involved in Skeletal Muscle Atrophy: A Starting Point for Potential Therapeutic Strategies. Cells 2022; 11:cells11162566. [PMID: 36010642 PMCID: PMC9406740 DOI: 10.3390/cells11162566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle tissue has the important function of supporting and defending the organism. It is the largest apparatus in the human body, and its function is important for contraction and movements. In addition, it is involved in the regulation of protein synthesis and degradation. In fact, inhibition of protein synthesis and/or activation of catabolism determines a pathological condition called muscle atrophy. Muscle atrophy is a reduction in muscle mass resulting in a partial or complete loss of function. It has been established that many physiopathological conditions can cause a reduction in muscle mass. Nevertheless, it is not well known that the molecular mechanisms and signaling processes caused this dramatic event. There are multiple concomitant processes involved in muscle atrophy. In fact, the gene transcription of some factors, oxidative stress mechanisms, and the alteration of ion transport through specific ion channels may contribute to muscle function impairment. In this review, we focused on the molecular mechanisms responsible for muscle damage and potential drugs to be used to alleviate this disabling condition.
Collapse
|
8
|
Nemirovskaya TL, Sharlo KA. Roles of ATP and SERCA in the Regulation of Calcium Turnover in Unloaded Skeletal Muscles: Current View and Future Directions. Int J Mol Sci 2022; 23:ijms23136937. [PMID: 35805949 PMCID: PMC9267070 DOI: 10.3390/ijms23136937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
A decrease in skeletal muscle contractile activity or its complete cessation (muscle unloading or disuse) leads to muscle fibers’ atrophy and to alterations in muscle performance. These changes negatively affect the quality of life of people who, for one reason or another, are forced to face a limitation of physical activity. One of the key regulatory events leading to the muscle disuse-induced changes is an impairment of calcium homeostasis, which leads to the excessive accumulation of calcium ions in the sarcoplasm. This review aimed to analyze the triggering mechanisms of calcium homeostasis impairment (including those associated with the accumulation of high-energy phosphates) under various types of muscle unloading. Here we proposed a hypothesis about the regulatory mechanisms of SERCA and IP3 receptors activity during muscle unloading, and about the contribution of these mechanisms to the excessive calcium ion myoplasmic accumulation and gene transcription regulation via excitation–transcription coupling.
Collapse
|