1
|
Zemkova H. Purinergic P2 Receptors: Structure and Function 2.0. Int J Mol Sci 2023; 24:ijms24065462. [PMID: 36982535 PMCID: PMC10049242 DOI: 10.3390/ijms24065462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
This Special Issue of the International Journal of Molecular Sciences (IJMS) is a direct continuation of the previous Special Issue of this journal, entitled “Purinergic P2 Receptors: Structure and Function” https://www [...]
Collapse
Affiliation(s)
- Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| |
Collapse
|
2
|
Maly M, Riedel T, Stikarova J, Suttnar J, Kotlin R, Hajsl M, Tousek P, Kaufmanova J, Kucerka O, Weisel JW, Dyr JE. Incorporation of Fibrin, Platelets, and Red Blood Cells into a Coronary Thrombus in Time and Space. Thromb Haemost 2021; 122:434-444. [PMID: 34781375 DOI: 10.1055/s-0041-1739193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We describe the internal structure, spatial organization and dynamic formation of coronary artery thrombi from ST-segment elevation myocardial infarction patients. Scanning electron microscopy (SEM) revealed significant differences among four groups of patients (<2 hours; 2-6 hours; 6-12 hours, and >12 hours) related to the time of ischemia. Coronary artery thrombi from patients presenting less than 2 hours after the infarction were almost entirely composed of platelets, with small amounts of fibrin and red blood cells. In contrast, thrombi from late presenters (>12 hours) consisted of mainly platelets at the distal end, where clotting was initiated, with almost no platelets at the proximal end, while the red blood cell content went from low at the initiating end to more than 90% at the proximal end. Furthermore, fibrin was present mainly on the outside of the thrombi and older thrombi contained thicker fibers. The red blood cells in late thrombi were compressed to a close-packed, tessellated array of polyhedral structures, called polyhedrocytes. Moreover, there was redistribution from the originally homogeneous composition to fibrin and platelets to the outside, with polyhedrocytes on the interior. The presence of polyhedrocytes and the redistribution of components are signs of in vivo clot contraction (or retraction). These results suggest why later thrombi are resistant to fibrinolytic agents and other treatment modalities, since the close-packed polyhedrocytes form a nearly impermeable seal. Furthermore, it is of particular clinical significance that these findings suggest specific disparate therapies that will be most effective at different stages of thrombus development.
Collapse
Affiliation(s)
- Martin Maly
- First Faculty of Medicine, Department of Medicine, Charles University in Prague and Military University Hospital, Prague, Czech Republic
| | - Tomas Riedel
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.,Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Stikarova
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jiri Suttnar
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Roman Kotlin
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Martin Hajsl
- First Faculty of Medicine, Department of Medicine, Charles University in Prague and Military University Hospital, Prague, Czech Republic
| | - Petr Tousek
- Cardiocenter, University Hospital Kralovske Vinohrady and Third Medical Faculty, Charles University, Prague, Czech Republic
| | - Jirina Kaufmanova
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.,Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Ondrej Kucerka
- First Faculty of Medicine, Department of Medicine, Charles University in Prague and Military University Hospital, Prague, Czech Republic
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jan E Dyr
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|