1
|
Mazumder S, Das T, Vankayala R. Ultrasonic-assisted europium decorated cuprous oxide nanoparticles: exploring their photothermal capabilities and antioxidant properties for biomedical applications. RSC Adv 2025; 15:6984-6993. [PMID: 40041375 PMCID: PMC11877118 DOI: 10.1039/d4ra08914f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
Metal oxide nanoparticles offer capabilities for cancer therapeutics, but their applicability is often jeopardized due to toxicity hurdles. To tackle this problem, in this study, we have synthesized europium decorated cuprous oxide nanoparticles (Eu-Cu2O NPs) via a facile ultrasonic-assisted method. Surface decoration of nanoparticles is an effective strategy to tailor their physicochemical and biological properties. The decorated nanoparticles were found to possess improved stability, superior biocompatibility and enhanced photothermal properties than the undecorated pristine nanoparticles (Cu2O NPs). In vitro studies validated the capacity of the decorated nanoparticles to regulate the production of reactive oxygen species (ROS) and in turn combat the inherent toxicity of cuprous nanoparticles. By controlling the ROS dynamics and decreasing inadvertent toxic effects minimize possibilities of higher toxicity enabling this innovative strategy to potentially transform into an effective platform for drug delivery systems.
Collapse
Affiliation(s)
- Sarmistha Mazumder
- Center for Medical Technologies, Indian Institute of Technology Jodhpur 342030 Rajasthan India
| | - Tiasa Das
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur 342030 Rajasthan India
| | - Raviraj Vankayala
- Center for Medical Technologies, Indian Institute of Technology Jodhpur 342030 Rajasthan India
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur 342030 Rajasthan India
| |
Collapse
|
2
|
Titova SA, Kruglova MP, Stupin VA, Manturova NE, Silina EV. Potential Applications of Rare Earth Metal Nanoparticles in Biomedicine. Pharmaceuticals (Basel) 2025; 18:154. [PMID: 40005968 PMCID: PMC11858778 DOI: 10.3390/ph18020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, the world scientific community has shown increasing interest in rare earth metals in general and their nanoparticles in particular. Medicine and pharmaceuticals are no exception in this matter. In this review, we have considered the main opportunities and potential applications of rare earth metal (gadolinium, europium, ytterbium, holmium, lutetium, dysprosium, erbium, terbium, thulium, scandium, yttrium, lanthanum, europium, neodymium, promethium, samarium, praseodymium, cerium) nanoparticles in biomedicine, with data ranging from single reports of effects found in vitro to numerous independent in vivo studies, as well as a number of challenges to their potential for wider application. The main areas of application of rare earth metals, including in the future, are diagnosis and treatment of malignant neoplasms, therapy of infections, as well as the use of antioxidant and regenerative properties of a number of nanoparticles. These applications are determined both by the properties of rare earth metal nanoparticles themselves and the need to search for new approaches to solve a number of urgent biomedical and public health problems. Oxide forms of lanthanides are most often used in biomedicine due to their greatest biocompatibility and nanoscale size, providing penetration through biological membranes. However, the existing contradictory or insufficient data on acute and chronic toxicity of lanthanides still make their widespread use difficult. There are various modification methods (addition of excipients, creation of nanocomposites, and changing the morphology of particles) that can reduce these effects. At the same time, despite the use of some representatives of lanthanides in clinical practice, further studies to establish the full range of pharmacological and toxic effects, as well as the search for approaches to modify nanoparticles remain relevant.
Collapse
Affiliation(s)
- Svetlana A. Titova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| |
Collapse
|
3
|
Enríquez S, Briceño S, Ramirez-Cando L, Debut A, Borrero-González LJ, González G. Luminescence Properties of Samarium-Doped Hydroxyapatite Nanoparticles and Cytotoxicity Assessment on SH-SY5Y Neuroblastoma Cells. ACS OMEGA 2024; 9:49857-49866. [PMID: 39713680 PMCID: PMC11656358 DOI: 10.1021/acsomega.4c08654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Samarium-doped nanohydroxyapatite is a biomaterial with nerve regeneration activity and bioimaging. In this work, Sm/HAp; (Ca10-x Sm x (PO4)6(OH)2) (0 ≤ x ≤ 1) was synthesized using the hydrothermal method and thermally treated from 200 to 800 °C. The samples were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, and luminescence spectroscopy. The results confirmed the successful integration of Sm3+ ions into the hydroxyapatite. Our findings revealed the influence of the Sm3+ content and thermal treatment on the emission properties, obtaining a maximum emission at Sm = 0.05 thermally treated at 800 °C. The SH-SY5Y neuroblastoma cell viability study revealed a Sm3+ concentration-and particle size-dependent response. This research emphasizes the optical and cell viability of Sm/HAp in SH-SY5Y neuroblastoma cells, making them suitable for further research as agents that activate regenerative processes in cells and neurons.
Collapse
Affiliation(s)
- Stephanie Enríquez
- School
of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Sarah Briceño
- School
of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Lenin Ramirez-Cando
- School
of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Alexis Debut
- Centro
de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171103, Ecuador
| | - Luis J. Borrero-González
- Facultad
de Ciencias Exactas y Naturales, Escuela de Ciencias Físicas
y Matemática, Laboratorio de Optica Aplicada, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Gema González
- School
of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador
| |
Collapse
|
4
|
Saha S, Tripathy S, Patra CR. Neuritogenic activity of metal nanoparticles. Nanomedicine (Lond) 2024; 19:363-366. [PMID: 38214170 DOI: 10.2217/nnm-2023-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Affiliation(s)
- Sudipta Saha
- Department of Applied Biology, CSIR - Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sanchita Tripathy
- Department of Applied Biology, CSIR - Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR - Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
5
|
Wu L, Yang F, Xue Y, Gu R, Liu H, Xia D, Liu Y. The biological functions of europium-containing biomaterials: A systematic review. Mater Today Bio 2023; 19:100595. [PMID: 36910271 PMCID: PMC9996443 DOI: 10.1016/j.mtbio.2023.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
The biological functions of rare-earth elements (REEs) have become a focus of intense research. Recent studies have demonstrated that ion doping or alloying of some REEs can optimize the properties of traditional biomaterials. Europium (Eu), which is an REE with low toxicity and good biocompatibility, has promising applications in biomedicine. This article systematically reviews the osteogenic, angiogenic, neuritogenic, antibacterial, and anti-tumor properties of Eu-containing biomaterials, thereby paving the way for biomedical applications of Eu. Data collection for this review was completed in October 2022, and 30 relevant articles were finally included. Most articles indicated that doping of Eu ions or Eu-compound nanoparticles in biomaterials can improve their osteogenic, angiogenic, neuritogenic, antibacterial, and anti-tumor properties. The angiogenic, antibacterial, and potential neuritogenic effects of Eu(OH)3 nanoparticles have also been demonstrated.
Collapse
Affiliation(s)
- Likun Wu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Fan Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yijia Xue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Dandan Xia
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Corresponding author. Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Corresponding author. Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| |
Collapse
|
7
|
Nanomaterials Application in Endodontics. MATERIALS 2021; 14:ma14185296. [PMID: 34576522 PMCID: PMC8464804 DOI: 10.3390/ma14185296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
In recent years, nanomaterials have become increasingly present in medicine, especially in dentistry. Their characteristics are proving to be very useful in clinical cases. Due to the intense research in the field of biomaterials and nanotechnology, the efficacy and possibilities of dental procedures have immensely expanded over the years. The nano size of materials allows them to exhibit properties not present in their larger-in-scale counterparts. The medical procedures in endodontics are time-consuming and mostly require several visits to be able to achieve the proper result. In this field of dentistry, there are still major issues about the removal of the mostly bacterial infection from the dental root canals. It has been confirmed that nanoparticles are much more efficient than traditional materials and appear to have superior properties when it comes to surface chemistry and bonding. Their unique antibacterial properties are also promising features in every medical procedure, especially in endodontics. High versatility of use of nanomaterials makes them a powerful tool in dental clinics, in a plethora of endodontic procedures, including pulp regeneration, drug delivery, root repair, disinfection, obturation and canal filling. This study focuses on summing up the current knowledge about the utility of nanomaterials in endodontics, their characteristics, advantages, disadvantages, and provides a number of reasons why research in this field should be continued.
Collapse
|