1
|
Albrecht M, Worthmann A, Heeren J, Diemert A, Arck PC. Maternal lipids in overweight and obesity: implications for pregnancy outcomes and offspring's body composition. Semin Immunopathol 2025; 47:10. [PMID: 39841244 PMCID: PMC11754334 DOI: 10.1007/s00281-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Overweight and obesity (OWO) are linked to dyslipidemia and low-grade chronic inflammation, which is fueled by lipotoxicity and oxidative stress. In the context of pregnancy, maternal OWO has long been known to negatively impact on pregnancy outcomes and maternal health, as well as to imprint a higher risk for diseases in offspring later in life. Emerging research suggests that individual lipid metabolites, which collectively form the lipidome, may play a causal role in the pathogenesis of OWO-related diseases. This can be applied to the onset of pregnancy complications such as gestational diabetes mellitus (GDM) and hypertensive disorders of pregnancy (HDP), which in fact occur more frequently in women affected by OWO. In this review, we summarize current knowledge on maternal lipid metabolites in pregnancy and highlight associations between the maternal lipidome and the risk to develop GDM, HDP and childhood OWO. Emerging data underpin that dysregulations in maternal triglyceride, phospholipid and polyunsaturated fatty acid (PUFA) metabolism may play a role in modulating the risk for adverse pregnancy outcomes and childhood OWO, but it is yet premature to convert currently available insights into clinical guidelines. Well-designed large-scale lipidomic studies, combined with translational approaches including animal models of obesity, will likely facilitate the recognition of underling pathways of OWO-related pregnancy complications and child's health outcomes, based on which clinical guidelines and recommendations can be updated.
Collapse
Affiliation(s)
- Marie Albrecht
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Junior Research Center for Reproduction: Sexual and Reproductive Health in Overweight and Obesity (SRHOO), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany.
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Jörg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Clara Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
3
|
Zhao L, Chang Q, Cong Z, Zhang Y, Liu Z, Zhao Y. Effects of dietary polyphenols on maternal and fetal outcomes in maternal diabetes. Food Funct 2023; 14:8692-8710. [PMID: 37724008 DOI: 10.1039/d3fo02048g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The incidences of short-term or long-term adverse maternal and fetal outcomes caused by maternal diabetes are increasing. Due to toxicity or side effects, economic pressures, and other problems associated with injections or oral hypoglycemic drugs, many researchers have investigated natural treatment methods. Polyphenols can protect against chronic pathologies by regulating numerous physiological processes and provide many health benefits. Moreover, polyphenols have anti-diabetic properties and can be used to treat diabetic complications. Diets rich in polyphenols are beneficial to pregnant women with diabetes. Here, we review the epidemiological and experimental evidence on the impact of dietary polyphenols on maternal and fetal outcomes in pregnant women with diabetes, and the effects of polyphenols on biological changes and possible mechanisms. Previous data (mainly from in vitro and animal experiments) showed that polyphenols can alleviate gestational diabetes mellitus and diabetic embryopathy by reducing maternal hyperglycemia and insulin resistance, alleviating inflammation and oxidative stress, and regulating related signaling pathways. Although polyphenols have shown many health benefits, further research is needed to better understand the complex interactions between polyphenols and maternal diabetes.
Collapse
Affiliation(s)
- Lu Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qing Chang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhangzhao Cong
- Department of Teaching Affairs, China Medical University, Shenyang, China
| | - Yalin Zhang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhuxi Liu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yuhong Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Xu J, Wei Y, Huang Y, Wei X. Regulatory Effects and Molecular Mechanisms of Tea and Its Active Compounds on Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3103-3124. [PMID: 36773311 DOI: 10.1021/acs.jafc.2c07702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease, is a multifactorial disease resulting from the interaction between environment, genetic background, and metabolic stress. Most treatments for NAFLD include dietary intervention and exercise show limited efficacy due to the complex mechanisms involved in NAFLD. Meanwhile, drug therapy is accompanied by serious side effects. The development of high-efficiency natural supplements is a sustainable strategy for the prevention and treatment of NAFLD. As the second most consumed beverage, tea has health benefits that have been widely recognized. Nevertheless, the intervention of tea active compounds in NAFLD has received limited attention. Tea contains abundant bioactive compounds with potential effects on NAFLD, such as catechins, flavonoids, theanine, tea pigments, and tea polysaccharides. We reviewed the intrinsic and environmental factors and pathogenic mechanisms that affect the occurrence and development of NAFLD, and summarized the influences of exercise, drugs, diet, and tea drinking on NAFLD. On this basis, we further analyzed the potential effects and molecular regulatory mechanisms of tea active compounds on NAFLD and proposed future development directions. This review hopes to provide novel insights into the development and application of tea active compounds in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200240, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
5
|
Rodríguez-González GL, Vargas-Hernández L, Reyes-Castro LA, Ibáñez CA, Bautista CJ, Lomas-Soria C, Itani N, Estrada-Gutierrez G, Espejel-Nuñez A, Flores-Pliego A, Montoya-Estrada A, Reyes-Muñoz E, Taylor PD, Nathanielsz PW, Zambrano E. Resveratrol Supplementation in Obese Pregnant Rats Improves Maternal Metabolism and Prevents Increased Placental Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11101871. [PMID: 36290594 PMCID: PMC9598144 DOI: 10.3390/antiox11101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Maternal obesity (MO) causes maternal and fetal oxidative stress (OS) and metabolic dysfunction. We investigated whether supplementing obese mothers with resveratrol improves maternal metabolic alterations and reduces OS in the placenta and maternal and fetal liver. From weaning through pregnancy female Wistar rats ate chow (C) or a high-fat diet (MO). One month before mating until 19 days’ gestation (dG), half the rats received 20 mg resveratrol/kg/d orally (Cres and MOres). At 19dG, maternal body weight, retroperitoneal fat adipocyte size, metabolic parameters, and OS biomarkers in the placenta and liver were determined. MO mothers showed higher body weight, triglycerides and leptin serum concentrations, insulin resistance (IR), decreased small and increased large adipocytes, liver fat accumulation, and hepatic upregulation of genes related to IR and inflammatory processes. Placenta, maternal and fetal liver OS biomarkers were augmented in MO. MOres mothers showed more small and fewer large adipocytes, lower triglycerides serum concentrations, IR and liver fat accumulation, downregulation of genes related to IR and inflammatory processes, and lowered OS in mothers, placentas, and female fetal liver. Maternal resveratrol supplementation in obese rats improves maternal metabolism and reduces placental and liver OS of mothers and fetuses in a sex-dependent manner.
Collapse
Affiliation(s)
- Guadalupe L. Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Lilia Vargas-Hernández
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Hospital de Ginecología y Obstetricia No. 4 Luis Castelazo Ayala, Mexico City 01090, Mexico
| | - Luis A. Reyes-Castro
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Carlos A. Ibáñez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Claudia J. Bautista
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Consuelo Lomas-Soria
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- CONACyT-Cátedras, Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Nozomi Itani
- Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London and King’s Health Partners, London SE1 7EH, UK
| | - Guadalupe Estrada-Gutierrez
- Research Direction, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Aurora Espejel-Nuñez
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Arturo Flores-Pliego
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Araceli Montoya-Estrada
- Coordination of Gynecological and Perinatal Endocrinology, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Enrique Reyes-Muñoz
- Coordination of Gynecological and Perinatal Endocrinology, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Paul D. Taylor
- Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London and King’s Health Partners, London SE1 7EH, UK
| | - Peter W. Nathanielsz
- Wyoming Center for Pregnancy and Life Course Health Research, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-55-5487-0900 (ext. 2417)
| |
Collapse
|