1
|
Kärkkäinen V, Hannonen S, Rusanen M, Lehtola JM, Saari T, Uusitalo H, Leinonen V, Thiede B, Kaarniranta K, Koivisto AM, Utheim TP. Tear fluid reflects the altered protein expressions of Alzheimer's disease patients in proteins involved in protein repair and clearance system or the regulation of cytoskeleton. J Alzheimers Dis 2024:13872877241295315. [PMID: 39558606 DOI: 10.1177/13872877241295315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND New biomarkers that improve diagnosis of Alzheimer's disease (AD) are warranted. Tear fluid (TF) containing variety of proteins that reflect pathophysiological changes of systemic diseases makes TF proteins potential biomarker candidates for AD. OBJECTIVE We investigated the expression levels of TF proteins in persons with mild AD and cognitively healthy controls (CO) to find out if altered proteins may link to the AD pathophysiology. METHODS We analyzed the data of the 53 study participants (34 COs, mean age 71 and Mini-Mental State Examination (MMSE) 28.9 ± 1.4 and 19 persons with AD, CDR 0.5-1, mean age 71 and MMSE 23.8 ± 2.8). All went through neurological status examination, cognitive tests, and ophthalmological examination. TF was collected using Schirmer strips. The TF protein content was evaluated via mass spectrometry-based proteomics and label-free quantification. RESULTS Eleven proteins having a role either in protein repair and clearance system, or regulation of cytoskeleton, showed altered expression in AD group compared to CO group. Seven of them were significantly (p ≤ 0.05) upregulated (Sti1, Twf1, Myl6, Otub1, Pls1 and Caza1) or, downregulated (HSP90) in AD group. CONCLUSIONS Altered expression of all these up- or downregulated proteins may be linked to AD pathophysiology. Thus, our results are encouraging for searching new biomarker candidates for AD. TF is potential biomarker candidate, because TF seems to reflect altered protein levels already in mild AD dementia.
Collapse
Affiliation(s)
- Virve Kärkkäinen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
- NeuroCenter, Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sanna Hannonen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
- Neurology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Minna Rusanen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
- Neurology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Juha-Matti Lehtola
- Neurology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Toni Saari
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Eye and Vision Research, Tampere University, Tampere, Finland
| | - Ville Leinonen
- NeuroCenter, Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Anne M Koivisto
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
- Department of Geriatrics, Helsinki University Hospital and Department of Neurosciences, University of Helsinki, Helsinki, Finland
| | - Tor Paaske Utheim
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway|
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Lapshina KK, Nefedova VV, Nabiev SR, Roman SG, Shchepkin DV, Kopylova GV, Kochurova AM, Beldiia EA, Kleymenov SY, Levitsky DI, Matyushenko AM. Functional and Structural Properties of Cytoplasmic Tropomyosin Isoforms Tpm1.8 and Tpm1.9. Int J Mol Sci 2024; 25:6873. [PMID: 38999987 PMCID: PMC11240984 DOI: 10.3390/ijms25136873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The actin cytoskeleton is one of the most important players in cell motility, adhesion, division, and functioning. The regulation of specific microfilament formation largely determines cellular functions. The main actin-binding protein in animal cells is tropomyosin (Tpm). The unique structural and functional diversity of microfilaments is achieved through the diversity of Tpm isoforms. In our work, we studied the properties of the cytoplasmic isoforms Tpm1.8 and Tpm1.9. The results showed that these isoforms are highly thermostable and differ in the stability of their central and C-terminal fragments. The properties of these isoforms were largely determined by the 6th exons. Thus, the strength of the end-to-end interactions, as well as the affinity of the Tpm molecule for F-actin, differed between the Tpm1.8 and Tpm1.9 isoforms. They were determined by whether an alternative internal exon, 6a or 6b, was included in the Tpm isoform structure. The strong interactions of the Tpm1.8 and Tpm1.9 isoforms with F-actin led to the formation of rigid actin filaments, the stiffness of which was measured using an optical trap. It is quite possible that the structural and functional features of the Tpm isoforms largely determine the appearance of these isoforms in the rigid actin structures of the cell cortex.
Collapse
Affiliation(s)
- Ksenia K. Lapshina
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (K.K.L.); (V.V.N.); (S.G.R.); (S.Y.K.); (D.I.L.)
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Victoria V. Nefedova
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (K.K.L.); (V.V.N.); (S.G.R.); (S.Y.K.); (D.I.L.)
| | - Salavat R. Nabiev
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (S.R.N.); (D.V.S.); (G.V.K.); (A.M.K.); (E.A.B.)
| | - Svetlana G. Roman
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (K.K.L.); (V.V.N.); (S.G.R.); (S.Y.K.); (D.I.L.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (S.R.N.); (D.V.S.); (G.V.K.); (A.M.K.); (E.A.B.)
| | - Galina V. Kopylova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (S.R.N.); (D.V.S.); (G.V.K.); (A.M.K.); (E.A.B.)
| | - Anastasia M. Kochurova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (S.R.N.); (D.V.S.); (G.V.K.); (A.M.K.); (E.A.B.)
| | - Evgenia A. Beldiia
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (S.R.N.); (D.V.S.); (G.V.K.); (A.M.K.); (E.A.B.)
| | - Sergey Y. Kleymenov
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (K.K.L.); (V.V.N.); (S.G.R.); (S.Y.K.); (D.I.L.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Dmitrii I. Levitsky
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (K.K.L.); (V.V.N.); (S.G.R.); (S.Y.K.); (D.I.L.)
| | - Alexander M. Matyushenko
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (K.K.L.); (V.V.N.); (S.G.R.); (S.Y.K.); (D.I.L.)
| |
Collapse
|
3
|
Li Q, Hao M, Zhu J, Yi L, Cheng W, Xie Y, Zhao S. Comparison of differentially expressed genes in longissimus dorsi muscle of Diannan small ears, Wujin and landrace pigs using RNA-seq. Front Vet Sci 2024; 10:1296208. [PMID: 38249550 PMCID: PMC10796741 DOI: 10.3389/fvets.2023.1296208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Pig growth is an important economic trait that involves the co-regulation of multiple genes and related signaling pathways. High-throughput sequencing has become a powerful technology for establishing the transcriptome profiles and can be used to screen genome-wide differentially expressed genes (DEGs). In order to elucidate the molecular mechanism underlying muscle growth, this study adopted RNA sequencing (RNA-seq) to identify and compare DEGs at the genetic level in the longissimus dorsi muscle (LDM) between two indigenous Chinese pig breeds (Diannan small ears [DSE] pig and Wujin pig [WJ]) and one introduced pig breed (Landrace pig [LP]). Methods Animals under study were from two Chinese indigenous pig breeds (DSE pig, n = 3; WJ pig, n = 3) and one introduced pig breed (LP, n = 3) were used for RNA sequencing (RNA-seq) to identify and compare the expression levels of DEGs in the LDM. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Results The results revealed that for the DSE, WJ, and LP libraries, more than 66, 65, and 71 million clean reads were generated by transcriptome sequencing, respectively. A total of 11,213 genes were identified in the LDM tissue of these pig breeds, of which 7,127 were co-expressed in the muscle tissue of the three samples. In total, 441 and 339 DEGs were identified between DSE vs. WJ and LP vs. DSE in the study, with 254, 193 up-regulated genes and 187, 193 down-regulated genes in DSE compared to WJ and LP. GO analysis and KEGG signaling pathway analysis showed that DEGs are significantly related to contractile fiber, sarcolemma, and dystrophin-associated glycoprotein complex, myofibril, sarcolemma, and myosin II complex, Glycolysis/Gluconeogenesis, Propanoate metabolism, and Pyruvate metabolism, etc. In combination with functional annotation of DEGs, key genes such as ENO3 and JUN were identified by PPI network analysis. Discussion In conclusion, the present study revealed key genes including DES, FLNC, PSMD1, PSMD6, PSME4, PSMB4, RPL11, RPL13A, ROS23, RPS29, MYH1, MYL9, MYL12B, TPM1, TPM4, ENO3, PGK1, PKM2, GPI, and the unannotated new gene ENSSSCG00000020769 and related signaling pathways that influence the difference in muscle growth and could provide a theoretical basis for improving pig muscle growth traits in the future.
Collapse
Affiliation(s)
- Qiuyan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Meilin Hao
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Junhong Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lanlan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenjie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuxiao Xie
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Logvinov AS, Nefedova VV, Yampolskaya DS, Kleymenov SY, Levitsky DI, Matyushenko AM. Structural and Functional Properties of Tropomyosin Isoforms Tpm4.1 and Tpm2.1. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:801-809. [PMID: 37748876 DOI: 10.1134/s0006297923060081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 09/27/2023]
Abstract
Tropomyosin (Tpm) is one of the most important partners of actin filament that largely determines its properties. In animal organisms, there are different isoforms of Tpm, which are believed to be involved in the regulation of various cellular functions. However, molecular mechanisms by which various Tpm cytoplasmic regulate of the functioning of actin filaments are still poorly understood. Here, we investigated the properties of Tpm2.1 and Tpm4.1 isoforms and compared them to each other and to more extensively studied Tpm isoforms. Tpm2.1 and Tpm4.1 were very similar in their affinity to F-actin, thermal stability, and resistance to limited proteolysis by trypsin, but differed markedly in the viscosity of their solutions and thermal stability of their complexes with F-actin. The main difference of Tpm2.1 and Tpm4.1 from other Tpm isoforms (e.g., Tpm1.6 and Tpm1.7) was their extremely low thermal stability as measured by the CD and DSC methods. We suggested the possible causes of this instability based on comparing the amino acid sequences of Tpm4.1 and Tpm2.1 with the sequences of Tpm1.6 and Tpm1.7 isoforms, respectively, that have similar exon structure.
Collapse
Affiliation(s)
- Andrey S Logvinov
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Victoria V Nefedova
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Daria S Yampolskaya
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey Y Kleymenov
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Dmitrii I Levitsky
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | | |
Collapse
|
5
|
Zhu Z, Ni S, Zhang J, Yuan Y, Bai Y, Yin X, Zhu Z. Genome-wide analysis of dysregulated RNA-binding proteins and alternative splicing genes in keloid. Front Genet 2023; 14:1118999. [PMID: 36777722 PMCID: PMC9908963 DOI: 10.3389/fgene.2023.1118999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: The pathogenesis of keloids remains unclear. Methods: In this study, we analyzed RNA-Seq data (GSE113619) of the local skin tissue of 8 keloid-prone individuals (KPI) and 6 healthy controls (HC) before and 42 days after trauma from the gene expression omnibus (GEO) database. The differential alternative splicing (AS) events associated with trauma healing between KPIs and HCs were identifified, and their functional differences were analyzed by gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathways. The co-expression relationship of differentially alternative splicing genes and differentially expressed RNA binding proteins (RBPs) was established subsequently. Results: A total of 674 differential AS events between the KD42 and the KD0 and 378 differential AS events between the HD42 and the HD0 were discovered. Notably, most of the differential genes related to keloids are enriched in actin, microtubule cells, and cortical actin cytoskeletal tissue pathway. We observed a signifificant association between AS genes (EPB41, TPM1, NF2, PARD3) and trauma healing in KPIs and HCs. We also found that the differential expression of healthy controls-specifific trauma healing-related RBPs (TKT, FDPS, SAMHD1) may affect the response of HCs to trauma healing by regulating the AS of downstream trauma healing-related genes such as DCN and DST. In contrast, KPIs also has specifific differential expression of trauma healing related RBPs (S100A9, HspB1, LIMA1, FBL), which may affect the healing response of KPIs to trauma by regulating the AS of downstream trauma healing-related genes such as FN1 and TPM1. Discussion: Our results were innovative in revealing early wound healing-related genes (EPB41, TPM1, NF2, PARD3) in KPI from the perspective of AS regulated by RBPs.
Collapse
Affiliation(s)
- Zhen Zhu
- Hangzhou Plastic Surgery Hospital, Hangzhou, China
| | - Shuangying Ni
- Department of Dermatology, The First Affiliated Hospital, Institute of Dermatology, Anhui Medical University, Hefei, China,The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jiali Zhang
- Department of Dermatology, The First Affiliated Hospital, Institute of Dermatology, Anhui Medical University, Hefei, China,The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Ying Yuan
- Department of Dermatology, The First Affiliated Hospital, Institute of Dermatology, Anhui Medical University, Hefei, China,The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yun Bai
- Department of Plastic Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xueli Yin
- Functional Experiment Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhengwei Zhu
- Department of Dermatology, The First Affiliated Hospital, Institute of Dermatology, Anhui Medical University, Hefei, China,The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China,*Correspondence: Zhengwei Zhu,
| |
Collapse
|
6
|
A Multi-Trait Association Analysis of Brain Disorders and Platelet Traits Identifies Novel Susceptibility Loci for Major Depression, Alzheimer's and Parkinson's Disease. Cells 2023; 12:cells12020245. [PMID: 36672180 PMCID: PMC9856280 DOI: 10.3390/cells12020245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 01/10/2023] Open
Abstract
Among candidate neurodegenerative/neuropsychiatric risk-predictive biomarkers, platelet count, mean platelet volume and platelet distribution width have been associated with the risk of major depressive disorder (MDD), Alzheimer's disease (AD) and Parkinson's disease (PD) through epidemiological and genomic studies, suggesting partial co-heritability. We exploited these relationships for a multi-trait association analysis, using publicly available summary statistics of genome-wide association studies (GWASs) of all traits reported above. Gene-based enrichment tests were carried out, as well as a network analysis of significantly enriched genes. We analyzed 4,540,326 single nucleotide polymorphisms shared among the analyzed GWASs, observing 149 genome-wide significant multi-trait LD-independent associations (p < 5 × 10-8) for AD, 70 for PD and 139 for MDD. Among these, 27 novel associations were detected for AD, 34 for PD and 40 for MDD. Out of 18,781 genes with annotated variants within ±10 kb, 62 genes were enriched for associations with AD, 70 with PD and 125 with MDD (p < 2.7 × 10-6). Of these, seven genes were novel susceptibility loci for AD (EPPK1, TTLL1, PACSIN2, TPM4, PIF1, ZNF689, AZGP1P1), two for PD (SLC26A1, EFNA3) and two for MDD (HSPH1, TRMT61A). The resulting network showed a significant excess of interactions (enrichment p = 1.0 × 10-16). The novel genes that were identified are involved in the organization of cytoskeletal architecture (EPPK1, TTLL1, PACSIN2, TPM4), telomere shortening (PIF1), the regulation of cellular aging (ZNF689, AZGP1P1) and neurodevelopment (EFNA3), thus, providing novel insights into the shared underlying biology of brain disorders and platelet parameters.
Collapse
|
7
|
Reindl T, Giese S, Greve JN, Reinke PY, Chizhov I, Latham SL, Mulvihill DP, Taft MH, Manstein DJ. Distinct actin–tropomyosin cofilament populations drive the functional diversification of cytoskeletal myosin motor complexes. iScience 2022; 25:104484. [PMID: 35720262 PMCID: PMC9204724 DOI: 10.1016/j.isci.2022.104484] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022] Open
Abstract
The effects of N-terminal acetylation of the high molecular weight tropomyosin isoforms Tpm1.6 and Tpm2.1 and the low molecular weight isoforms Tpm1.12, Tpm3.1, and Tpm4.2 on the actin affinity and the thermal stability of actin-tropomyosin cofilaments are described. Furthermore, we show how the exchange of cytoskeletal tropomyosin isoforms and their N-terminal acetylation affects the kinetic and chemomechanical properties of cytoskeletal actin-tropomyosin-myosin complexes. Our results reveal the extent to which the different actin-tropomyosin-myosin complexes differ in their kinetic and functional properties. The maximum sliding velocity of the actin filament as well as the optimal motor density for continuous unidirectional movement, parameters that were previously considered to be unique and invariant properties of each myosin isoform, are shown to be influenced by the exchange of the tropomyosin isoform and the N-terminal acetylation of tropomyosin. Tpm diversity is largely determined by sequences contributing to the overlap region Global sequence differences are of greater importance than variable exon 6 usage Tpm isoforms confer distinctly altered properties to cytoskeletal myosin motors Cytoskeletal myosins are differentially affected by N-terminal acetylation of Tpm
Collapse
|
8
|
Marchenko MA, Nefedova VV, Yampolskaya DS, Borzova VA, Kleymenov SY, Nabiev SR, Nikitina LV, Matyushenko AM, Levitsky DI. Comparative structural and functional studies of low molecular weight tropomyosin isoforms, the TPM3 gene products. Arch Biochem Biophys 2021; 710:108999. [PMID: 34339666 DOI: 10.1016/j.abb.2021.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Tropomyosin (Tpm) is an actin-associated protein and key regulator of actin filament structure and dynamics in muscle and non-muscle cells where it participates in many vital processes. Human non-muscle cells produce many Tpm isoforms; however, little is known yet about their structural and functional properties. In the present work, we have applied various methods to investigate the properties of five low molecular weight Tpm isoforms (Tpm3.1, Tpm3.2, Tpm3.4, Tpm3.5, and Tpm3.7), the products of TPM3 gene, which significantly differ by alternatively spliced internal exon 6 (6a or 6b) and C-terminal exon 9 (9a, 9c or 9d). Our results clearly demonstrate that the properties of these Tpm isoforms are quite different depending on sequence variations in alternatively spliced regions of their molecules. These differences can be important in further studies to explain why these Tpm isoforms play a key role in organization and dynamics of the cytoskeleton.
Collapse
Affiliation(s)
- Marina A Marchenko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia; Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119234, Russia
| | - Victoria V Nefedova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Daria S Yampolskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Vera A Borzova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Sergey Y Kleymenov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334, Moscow, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Alexander M Matyushenko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Dmitrii I Levitsky
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia.
| |
Collapse
|
9
|
Cao J, Routh AL, Kuyumcu-Martinez MN. Nanopore sequencing reveals full-length Tropomyosin 1 isoforms and their regulation by RNA-binding proteins during rat heart development. J Cell Mol Med 2021; 25:8352-8362. [PMID: 34302435 PMCID: PMC8419188 DOI: 10.1111/jcmm.16795] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing (AS) contributes to the diversity of the proteome by producing multiple isoforms from a single gene. Although short‐read RNA‐sequencing methods have been the gold standard for determining AS patterns of genes, they have a difficulty in defining full‐length mRNA isoforms assembled using different exon combinations. Tropomyosin 1 (TPM1) is an actin‐binding protein required for cytoskeletal functions in non‐muscle cells and for contraction in muscle cells. Tpm1 undergoes AS regulation to generate muscle versus non‐muscle TPM1 protein isoforms with distinct physiological functions. It is unclear which full‐length Tpm1 isoforms are produced via AS and how they are regulated during heart development. To address these, we utilized nanopore long‐read cDNA sequencing without gene‐specific PCR amplification. In rat hearts, we identified full‐length Tpm1 isoforms composed of distinct exons with specific exon linkages. We showed that Tpm1 undergoes AS transitions during embryonic heart development such that muscle‐specific exons are connected generating predominantly muscle‐specific Tpm1 isoforms in adult hearts. We found that the RNA‐binding protein RBFOX2 controls AS of rat Tpm1 exon 6a, which is important for cooperative actin binding. Furthermore, RBFOX2 regulates Tpm1 AS of exon 6a antagonistically to the RNA‐binding protein PTBP1. In sum, we defined full‐length Tpm1 isoforms with different exon combinations that are tightly regulated during cardiac development and provided insights into the regulation of Tpm1 AS by RNA‐binding proteins. Our results demonstrate that nanopore sequencing is an excellent tool to determine full‐length AS variants of muscle‐enriched genes.
Collapse
Affiliation(s)
- Jun Cao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.,Sealy Centre for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|