1
|
Hao MJ, Cheng ZY, Gao Y, Xin L, Yu CT, Wang TL, Li ZS, Wang LW. Liquid biopsy of oesophageal squamous cell carcinoma: implications in diagnosis, prognosis, and treatment monitoring. Scand J Gastroenterol 2024; 59:698-709. [PMID: 38466190 DOI: 10.1080/00365521.2024.2310167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 03/12/2024]
Abstract
Oesophageal squamous cell carcinoma (ESCC) is a common malignant tumour of the gastrointestinal tract. Early detection and access to appropriate treatment are crucial for the long-term survival of patients. However, limited diagnostic and monitoring methods are available for identifying early stage ESCC. Endoscopic screening and surgical resection are commonly used to diagnose and treat early ESCC. However, these methods have disadvantages, such as high recurrence, lethality, and mortality rates. Therefore, methods to improve early diagnosis of ESCC and reduce its mortality rate are urgently required. In 1961, Gary et al. proposed a novel liquid biopsy approach for clinical diagnosis. This involved examining exosomes, circulating tumour cells, circulating free DNA, and circulating free RNA in body fluids. The ability of liquid biopsy to obtain samples repeatedly, wide detection range, and fast detection speed make it a feasible option for non-invasive tumour detection. In clinical practice, liquid biopsy technology has gained popularity for early screening, diagnosis, treatment efficacy monitoring, and prognosis assessment. Thus, this is a highly promising examination method. However, there have been no comprehensive reviews on the four factors of liquid biopsy in the context of ESCC. This review aimed to analyse the progress of liquid biopsy research for ESCC, including its classification, components, and potential future applications.
Collapse
Affiliation(s)
- Mei-Juan Hao
- University of Shanghai for Science and Technology, Shanghai, China
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Anaesthesia and Surgery, Guiyang Fourth People's Hospital, Guiyang, China
| | - Zhi-Yuan Cheng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Gao
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lei Xin
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chu-Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ting-Lu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Luo-Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Wang R, Yang Y, Lu T, Cui Y, Li B, Liu X. Circulating cell-free DNA-based methylation pattern in plasma for early diagnosis of esophagus cancer. PeerJ 2024; 12:e16802. [PMID: 38313016 PMCID: PMC10838104 DOI: 10.7717/peerj.16802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
With the increased awareness of early tumor detection, the importance of detecting and diagnosing esophageal cancer in its early stages has been underscored. Studies have consistently demonstrated the crucial role of methylation levels in circulating cell-free DNA (cfDNA) in identifying and diagnosing early-stage cancer. cfDNA methylation pertains to the methylation state within the genomic scope of cfDNA and is strongly associated with cancer development and progression. Several research teams have delved into the potential application of cfDNA methylation in identifying early-stage esophageal cancer and have achieved promising outcomes. Recent research supports the high sensitivity and specificity of cfDNA methylation in early esophageal cancer diagnosis, providing a more accurate and efficient approach for early detection and improved clinical management. Accordingly, this review aims to present an overview of methylation-based cfDNA research with a focus on the latest developments in the early detection of esophageal cancer. Additionally, this review summarizes advanced analytical technologies for cfDNA methylation that have significantly benefited from recent advancements in separation and detection techniques, such as methylated DNA immunoprecipitation sequencing (MeDIP-seq). Recent findings suggest that biomarkers based on cfDNA methylation may soon find successful applications in the early detection of esophageal cancer. However, large-scale prospective clinical trials are required to identify the potential of these biomarkers.
Collapse
Affiliation(s)
- Rui Wang
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yue Yang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Tianyu Lu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Youbin Cui
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xin Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Richter F, Henssen C, Steiert TA, Meissner T, Mehdorn AS, Röcken C, Franke A, Egberts JH, Becker T, Sebens S, Forster M. Combining Solid and Liquid Biopsy for Therapy Monitoring in Esophageal Cancer. Int J Mol Sci 2023; 24:10673. [PMID: 37445849 DOI: 10.3390/ijms241310673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Esophageal cancer (EC) has one of the highest mortality rates among cancers, making it imperative that therapies are optimized and dynamically adapted to individuals. In this regard, liquid biopsy is an increasingly important method for residual disease monitoring. However, conflicting detection rates (14% versus 60%) and varying cell-free circulating tumor DNA (ctDNA) levels (0.07% versus 0.5%) have been observed in previous studies. Here, we aim to resolve this discrepancy. For 19 EC patients, a complete set of cell-free DNA (cfDNA), formalin-fixed paraffin-embedded tumor tissue (TT) DNA and leukocyte DNA was sequenced (139 libraries). cfDNA was examined in biological duplicates and/or longitudinally, and TT DNA was examined in technical duplicates. In baseline cfDNA, mutations were detected in 12 out of 19 patients (63%); the median ctDNA level was 0.4%. Longitudinal ctDNA changes were consistent with clinical presentation. Considerable mutational diversity was observed in TT, with fewer mutations in cfDNA. The most recurrently mutated genes in TT were TP53, SMAD4, TSHZ3, and SETBP1, with SETBP1 being reported for the first time. ctDNA in blood can be used for therapy monitoring of EC patients. However, a combination of solid and liquid samples should be used to help guide individualized EC therapy.
Collapse
Affiliation(s)
- Florian Richter
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany
| | - Clara Henssen
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | | | - Tobias Meissner
- Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Anne-Sophie Mehdorn
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of Surgery, Israelitisches Krankenhaus Hamburg, 22297 Hamburg, Germany
| | - Thomas Becker
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| |
Collapse
|
4
|
Sheikh M, Roshandel G, McCormack V, Malekzadeh R. Current Status and Future Prospects for Esophageal Cancer. Cancers (Basel) 2023; 15:765. [PMID: 36765722 PMCID: PMC9913274 DOI: 10.3390/cancers15030765] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Esophageal cancer (EC) is the ninth most common cancer and the sixth leading cause of cancer deaths worldwide. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are the two main histological subtypes with distinct epidemiological and clinical features. While the global incidence of ESCC is declining, the incidence of EAC is increasing in many countries. Decades of epidemiologic research have identified distinct environmental exposures for ESCC and EAC subtypes. Recent advances in understanding the genomic aspects of EC have advanced our understanding of EC causes and led to using specific genomic alterations in EC tumors as biomarkers for early diagnosis, treatment, and prognosis of this cancer. Nevertheless, the prognosis of EC is still poor, with a five-year survival rate of less than 20%. Currently, there are significant challenges for early detection and secondary prevention for both ESCC and EAC subtypes, but Cytosponge™ is shifting this position for EAC. Primary prevention remains the preferred strategy for reducing the global burden of EC. In this review, we will summarize recent advances, current status, and future prospects of the studies related to epidemiology, time trends, environmental risk factors, prevention, early diagnosis, and treatment for both EC subtypes.
Collapse
Affiliation(s)
- Mahdi Sheikh
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 69007 Lyon, France
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | - Valerie McCormack
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 69007 Lyon, France
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| |
Collapse
|
5
|
Mbatha S, Hull R, Dlamini Z. Exploiting the Molecular Basis of Oesophageal Cancer for Targeted Therapies and Biomarkers for Drug Response: Guiding Clinical Decision-Making. Biomedicines 2022; 10:biomedicines10102359. [PMID: 36289620 PMCID: PMC9598679 DOI: 10.3390/biomedicines10102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Worldwide, oesophageal cancer is the sixth leading cause of deaths related to cancer and represents a major health concern. Sub-Saharan Africa is one of the regions of the world with the highest incidence and mortality rates for oesophageal cancer and most of the cases of oesophageal cancer in this region are oesophageal squamous cell carcinoma (OSCC). The development and progression of OSCC is characterized by genomic changes which can be utilized as diagnostic or prognostic markers. These include changes in the expression of various genes involved in signaling pathways that regulate pathways that regulate processes that are related to the hallmarks of cancer, changes in the tumor mutational burden, changes in alternate splicing and changes in the expression of non-coding RNAs such as miRNA. These genomic changes give rise to characteristic profiles of altered proteins, transcriptomes, spliceosomes and genomes which can be used in clinical applications to monitor specific disease related parameters. Some of these profiles are characteristic of more aggressive forms of cancer or are indicative of treatment resistance or tumors that will be difficult to treat or require more specialized specific treatments. In Sub-Saharan region of Africa there is a high incidence of viral infections such as HPV and HIV, which are both risk factors for OSCC. The genomic changes that occur due to these infections can serve as diagnostic markers for OSCC related to viral infection. Clinically this is an important distinction as it influences treatment as well as disease progression and treatment monitoring practices. This underlines the importance of the characterization of the molecular landscape of OSCC in order to provide the best treatment, care, diagnosis and screening options for the management of OSCC.
Collapse
Affiliation(s)
- Sikhumbuzo Mbatha
- SAMRC Precision Oncology Research Unit (PORU), SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
- Department of Surgery, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
- Correspondence: (S.M.); (Z.D.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
- Correspondence: (S.M.); (Z.D.)
| |
Collapse
|
6
|
Jiang M, Zhou H, Jiang S, Yu H. A Review of Circulating Tumor DNA in the Diagnosis and Monitoring of Esophageal Cancer. Med Sci Monit 2022; 28:e934106. [PMID: 35210388 PMCID: PMC8886734 DOI: 10.12659/msm.934106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Circulating tumor DNA (ctDNA) is a type of cell-free DNA released by tumor cells after necrosis and apoptosis, and it can be actively secreted by tumor cells. Since ctDNA is derived from various tumor sites, it can provide far more comprehensive genomic and epigenomic information than a single-site biopsy. Therefore, ctDNA can overcome tumor heterogeneity, which is the major limitation of a traditional tissue biopsy approach. Noninvasive ctDNA assays allow continuous real-time monitoring of the molecular status of cancers. Recently, ctDNA assays have been widely used in clinical practice, including cancer diagnosis, evaluation of therapeutic efficacy and prognosis, and monitoring of relapse and metastasis. Although ctDNA shows a high diagnostic performance in advanced esophageal cancer, it is far from satisfactory for early diagnosis of esophageal cancer. Monitoring the dynamic changes of ctDNA is beneficial for the evaluation of therapeutic efficacy and prediction of early recurrence in esophageal cancer. It is necessary to establish standards for individualized ctDNA detection in the evaluation of treatment response and surveillance of esophageal cancer and to develop clinical practice guideline for the systemic treatment of patients with "ctDNA recurrence." This review aims to provide an update on the role of ctDNA in the diagnosis and monitoring of esophageal cancer.
Collapse
Affiliation(s)
- Min Jiang
- Department of Pathology, Taizhou People’s Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, Taizhou, Jiangsu, PR China
| | - Huilin Zhou
- Department of Pathology, Taizhou People’s Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, Taizhou, Jiangsu, PR China
| | - Su Jiang
- Department of Rehabilitation, Taizhou People’s Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Taizhou, Jiangsu, PR China
| | - Hong Yu
- Department of Pathology, Taizhou People’s Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, Taizhou, Jiangsu, PR China
| |
Collapse
|