1
|
Kim D, Roh H, Lee HM, Kim SJ, Im M. Localization of hyperpolarization-activated cyclic nucleotide-gated channels in the vertebrate retinas across species and their physiological roles. Front Neuroanat 2024; 18:1385932. [PMID: 38562955 PMCID: PMC10982330 DOI: 10.3389/fnana.2024.1385932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Transmembrane proteins known as hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control the movement of Na+ and K+ ions across cellular membranes. HCN channels are known to be involved in crucial physiological functions in regulating neuronal excitability and rhythmicity, and pacemaker activity in the heart. Although HCN channels have been relatively well investigated in the brain, their distribution and function in the retina have received less attention, remaining their physiological roles to be comprehensively understood. Also, because recent studies reported HCN channels have been somewhat linked with the dysfunction of photoreceptors which are affected by retinal diseases, investigating HCN channels in the retina may offer valuable insights into disease mechanisms and potentially contribute to identifying novel therapeutic targets for retinal degenerative disorders. This paper endeavors to summarize the existing literature on the distribution and function of HCN channels reported in the vertebrate retinas of various species and discuss the potential implications for the treatment of retinal diseases. Then, we recapitulate current knowledge regarding the function and regulation of HCN channels, as well as their relevance to various neurological disorders.
Collapse
Affiliation(s)
- Daniel Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University (SNU), Seoul, Republic of Korea
| | - Hyeonhee Roh
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Hyung-Min Lee
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Sang Jeong Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University (SNU), Seoul, Republic of Korea
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
He Z, Liu J, Zeng XL, Fan JH, Wang K, Chen Y, Li ZC, Zhao B. Inhibition of hyperpolarization-activated cyclic nucleotide-gated cation channel attenuates cerebral ischemia reperfusion-induced impairment of learning and memory by regulating apoptotic pathway. Metab Brain Dis 2023; 38:2751-2763. [PMID: 37857792 DOI: 10.1007/s11011-023-01306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
Stroke is the second leading cause of death globally. Cognitive dysfunction is a common complication of stroke, which seriously affects the patient's quality of life. Previous studies have shown that the expression of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel is closely related to ischemia-reperfusion (IR) injury and subsequent cognitive impairment. We also found that ZD7288, a specific inhibitor of the HCN channel, attenuated IR injury during short-term reperfusion. Since apoptosis can induce cell necrosis and aggravate cognitive impairment after IR, the purpose of this study is to define whether ZD7288 could improve cognitive impairment after prolonged cerebral reperfusion in rats by regulating apoptotic pathways. Our data indicated that ZD7288 can ameliorate spatial cognitive behavior and synaptic plasticity, protect the morphology of hippocampal neurons, and alleviate hippocampal apoptotic cells in IR rats. This effect may be related to down-regulating the expressions of pro-apoptotic proteins such as AIF, p53, Bax, and Caspase-3, and increasing the ratio of Bcl-2/Bax. Taken together, it suggested that inhibition of the HCN channel improves cognitive impairment after IR correlated with its regulation of apoptotic pathways.
Collapse
Affiliation(s)
- Zhi He
- Department of Pharmacology, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China.
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, PR China.
- College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, PR China.
| | - Jue Liu
- Department of Pharmacy, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430070, PR China
| | - Xiao-Li Zeng
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, PR China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, PR China
| | - Jing-Hong Fan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, PR China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, PR China
| | - Ke Wang
- Department of Pharmacology, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China
| | - Yue Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, PR China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, PR China
| | - Zi-Cheng Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, PR China.
- College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, PR China.
| | - Bo Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, PR China.
- College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, PR China.
| |
Collapse
|
3
|
Zheng Y, Shao S, Zhang Y, Yuan S, Xing Y, Wang J, Qi X, Cui K, Tong J, Liu F, Cui S, Wan Y, Yi M. HCN2 Channels in the Ventral Hippocampal CA1 Regulate Nociceptive Hypersensitivity in Mice. Int J Mol Sci 2023; 24:13823. [PMID: 37762124 PMCID: PMC10531460 DOI: 10.3390/ijms241813823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic pain is a significant health problem worldwide. Recent evidence has suggested that the ventral hippocampus is dysfunctional in humans and rodents, with decreased neuronal excitability and connectivity with other brain regions, parallel pain chronicity, and persistent nociceptive hypersensitivity. But the molecular mechanisms underlying hippocampal modulation of pain remain poorly elucidated. In this study, we used ex vivo whole-cell patch-clamp recording, immunofluorescence staining, and behavioral tests to examine whether hyperpolarization-activated cyclic nucleotide-gated channels 2 (HCN2) in the ventral hippocampal CA1 (vCA1) were involved in regulating nociceptive perception and CFA-induced inflammatory pain in mice. Reduced sag potential and firing rate of action potentials were observed in vCA1 pyramidal neurons from CFA-injected mice. Moreover, the expression of HCN2, but not HCN1, in vCA1 decreased in mice injected with CFA. HCN2 knockdown in vCA1 pyramidal neurons induced thermal hypersensitivity, whereas overexpression of HCN2 alleviated thermal hyperalgesia induced by intraplantar injection of CFA in mice. Our findings suggest that HCN2 in the vCA1 plays an active role in pain modulation and could be a promising target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Yawen Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Shan Shao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Yu Zhang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) & Peking Union Medical College (PUMC), Beijing 100101, China;
| | - Shulu Yuan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Yuanwei Xing
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100101, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100101, China
| |
Collapse
|