1
|
Hovorková M, Kaščáková B, Petrásková L, Havlíčková P, Nováček J, Pinkas D, Gardian Z, Křen V, Bojarová P, Smatanová IK. The variable structural flexibility of the Bacillus circulans β-galactosidase isoforms determines their unique functionalities. Structure 2024; 32:2023-2037.e5. [PMID: 39353423 DOI: 10.1016/j.str.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
β-Galactosidase from Bacillus circulans ATCC 31382 (BgaD) is a biotechnologically important enzyme for the synthesis of β-galactooligosaccharides (GOS). Among its four isoforms, isoform A (BgaD-A) has distinct synthetic properties. Here, we present cryoelectron microscopy (cryo-EM) structures of BgaD-A and compare them with the known X-ray crystal structure of isoform D (BgaD-D), revealing substantial structural divergences between the two isoforms. In contrast to BgaD-D, BgaD-A features a flexible Big-4 domain and another enigmatic domain. The newly identified flexible region in BgaD-A is termed as "barrier domain 8," and serves as a barricade, obstructing the access of longer oligosaccharide substrates into the active site of BgaD-A. The transgalactosylation reactions catalyzed by both isoforms revealed that BgaD-A has a higher selectivity than BgaD-D in the earlier stages of the reaction and is prevailingly directed to shorter galactooligosaccharides. This study improves our understanding of the structural determinants governing β-galactosidase catalysis, with implications for tailored GOS production.
Collapse
Affiliation(s)
- Michaela Hovorková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, CZ-12843 Praha2, Czech Republic
| | - Barbora Kaščáková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic
| | - Petra Havlíčková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Jiří Nováček
- Cryo-Electron Microscopy Core Facility, CEITEC, CZ-62500 Brno, Czech Republic
| | - Daniel Pinkas
- Cryo-Electron Microscopy Core Facility, CEITEC, CZ-62500 Brno, Czech Republic
| | - Zdenko Gardian
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic; Laboratory of Electron Microscopy, Biology Centre of the Czech Academy of Sciences, CZ-37005 České Budějovice, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic.
| | - Ivana Kutá Smatanová
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Ding Q, Cai J, Jin L, Hu W, Song W, Rose P, Tang Z, Zhan Y, Bao L, Lei W, Zhu YZ. A novel small molecule ZYZ384 targeting SMYD3 for hepatocellular carcinoma via reducing H3K4 trimethylation of the Rac1 promoter. MedComm (Beijing) 2024; 5:e711. [PMID: 39286779 PMCID: PMC11401973 DOI: 10.1002/mco2.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 09/19/2024] Open
Abstract
SMYD3 (SET and MYND domain-containing 3) is a histone lysine methyltransferase highly expressed in different types of cancer(s) and is a promising epigenetic target for developing novel antitumor therapeutics. No selective inhibitors for this protein have been developed for cancer treatment. Therefore, the current study describes developing and characterizing a novel small molecule ZYZ384 screened and synthesized based on SMYD3 structure. Virtual screening was initially used to identify a lead compound and followed up by modification to get the novel molecules. Several technologies were used to facilitate compound screening about these novel molecules' binding affinities and inhibition activities with SMYD3 protein; the antitumor activity has been assessed in vitro using various cancer cell lines. In addition, a tumor-bearing nude mice model was established, and the activity of the selected molecule was determined in vivo. Both RNA-seq and chip-seq were performed to explore the antitumor mechanism. This work identified a novel small molecule ZYZ384 targeting SMYD3 with antitumor activity and impaired hepatocellular carcinoma tumor growth by reducing H3K4 trimethylation of the Rac1 promoter triggering the tumor cell cycle arrest through the AKT pathway.
Collapse
Affiliation(s)
- Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
- Affiliated Hospital of Guangdong Medical University Zhanjiang China
- Joint Laboratory of TCM Innovation (Transformation) of Guizhou and Macau Guizhou University of Traditional Chinese Medicine Guiyang China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Li Jin
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Wu Song
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Peter Rose
- School of Biosciences University of Nottingham Loughborough UK
| | - Zhiyuan Tang
- Department of Pharmacy Affiliated Hospital of Nantong University & Medical School of Nantong University Nantong China
| | - Yangyang Zhan
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital Navy Military Medical University Shanghai China
| | - Leilei Bao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital Navy Military Medical University Shanghai China
| | - Wei Lei
- Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy Fudan University Shanghai China
| |
Collapse
|
3
|
Zhao Y, Du SS, Zhao CY, Li TL, Tong SC, Zhao L. Mechanism of Abnormal Activation of MEK1 Induced by Dehydroalanine Modification. Int J Mol Sci 2024; 25:7482. [PMID: 39000589 PMCID: PMC11242638 DOI: 10.3390/ijms25137482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Mitogen-activated protein kinase kinase 1 (MAPK kinase 1, MEK1) is a key kinase in the mitogen-activated protein kinase (MAPK) signaling pathway. MEK1 mutations have been reported to lead to abnormal activation that is closely related to the malignant growth and spread of various tumors, making it an important target for cancer treatment. Targeting MEK1, four small-molecular drugs have been approved by the FDA, including Trametinib, Cobimetinib, Binimetinib, and Selumetinib. Recently, a study showed that modification with dehydroalanine (Dha) can also lead to abnormal activation of MEK1, which has the potential to promote tumor development. In this study, we used molecular dynamics simulations and metadynamics to explore the mechanism of abnormal activation of MEK1 caused by the Dha modification and predicted the inhibitory effects of four FDA-approved MEK1 inhibitors on the Dha-modified MEK1. The results showed that the mechanism of abnormal activation of MEK1 caused by the Dha modification is due to the movement of the active segment, which opens the active pocket and exposes the catalytic site, leading to sustained abnormal activation of MEK1. Among four FDA-approved inhibitors, only Selumetinib clearly blocks the active site by changing the secondary structure of the active segment from α-helix to disordered loop. Our study will help to explain the mechanism of abnormal activation of MEK1 caused by the Dha modification and provide clues for the development of corresponding inhibitors.
Collapse
Affiliation(s)
- Yue Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Shan-Shan Du
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Chao-Yue Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Tian-Long Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China; (T.-L.L.); (S.-C.T.)
| | - Si-Cheng Tong
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China; (T.-L.L.); (S.-C.T.)
| | - Li Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| |
Collapse
|
4
|
Corbeski I, Vargas-Rosales PA, Bedi RK, Deng J, Coelho D, Braud E, Iannazzo L, Li Y, Huang D, Ethève-Quelquejeu M, Cui Q, Caflisch A. The catalytic mechanism of the RNA methyltransferase METTL3. eLife 2024; 12:RP92537. [PMID: 38470714 PMCID: PMC10932547 DOI: 10.7554/elife.92537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on messenger RNA (mRNA) in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a BA representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release, and suggests that the latter step is rate-limiting for METTL3. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.
Collapse
Affiliation(s)
- Ivan Corbeski
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | | | - Rajiv Kumar Bedi
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Jiahua Deng
- Department of Chemistry, Boston UniversityBostonUnited States
| | - Dylan Coelho
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Emmanuelle Braud
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Laura Iannazzo
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Yaozong Li
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Danzhi Huang
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Mélanie Ethève-Quelquejeu
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Qiang Cui
- Department of Chemistry, Boston UniversityBostonUnited States
- Department of Physics, Boston UniversityBostonUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Amedeo Caflisch
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
5
|
Corbeski I, Vargas-Rosales PA, Bedi RK, Deng J, Coelho D, Braud E, Iannazzo L, Li Y, Huang D, Etheve-Quelquejeu M, Cui Q, Caflisch A. The catalytic mechanism of the RNA methyltransferase METTL3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556513. [PMID: 37732228 PMCID: PMC10508762 DOI: 10.1101/2023.09.06.556513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on mRNA in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a bisubstrate analogue representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release catalysed by METTL3, and suggests that the latter step is rate-limiting. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.
Collapse
|
6
|
Pattaranggoon NC, Daduang S, Rungrotmongkol T, Teajaroen W, Tipmanee V, Hannongbua S. Computational model for lipid binding regions in phospholipase (Ves a 1) from Vespa venom. Sci Rep 2023; 13:10652. [PMID: 37391452 PMCID: PMC10313747 DOI: 10.1038/s41598-023-36742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/08/2023] [Indexed: 07/02/2023] Open
Abstract
The Thai banded tiger wasp (Vespa affinis) is a dangerous vespid species found in Southeast Asia, and its stings often result in fatalities due to the presence of lethal phospholipase A[Formula: see text], known as Vespapase or Ves a 1. Developing anti-venoms for Ves a 1 using chemical drugs, such as chemical drug guide, remains a challenging task. In this study, we screened 2056 drugs against the opening conformation of the venom using the ZINC 15 and e-Drug 3D databases. The binding free energy of the top five drug candidates complexed with Ves a 1 was calculated using 300-ns-MD trajectories. Our results revealed that voxilaprevir had a higher binding free energy at the catalytic sites than other drug candidates. Furthermore, the MD simulation results indicated that voxilaprevir formed stable conformations within the catalytic pocket. Consequently, voxilaprevir could act as a potent inhibitor, opening up avenues for the development of more effective anti-venom therapeutics for Ves a 1.
Collapse
Affiliation(s)
- Nawanwat C Pattaranggoon
- Programme in Bioinformatics and Computational Biology, Graduate school, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanyada Rungrotmongkol
- Programme in Bioinformatics and Computational Biology, Graduate school, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Withan Teajaroen
- Faculty of Associated Medical Sciences, Center for Innovation and Standard for Medical Technology and Physical Therapy, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Supot Hannongbua
- Department of Chemistry, Faculty of Science, Center of Excellence in Computational Chemistry (CECC), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Schnee P, Choudalakis M, Weirich S, Khella MS, Carvalho H, Pleiss J, Jeltsch A. Mechanistic basis of the increased methylation activity of the SETD2 protein lysine methyltransferase towards a designed super-substrate peptide. Commun Chem 2022; 5:139. [PMID: 36697904 PMCID: PMC9814698 DOI: 10.1038/s42004-022-00753-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/07/2022] [Indexed: 01/28/2023] Open
Abstract
Protein lysine methyltransferases have important regulatory functions in cells, but mechanisms determining their activity and specificity are incompletely understood. Naturally, SETD2 introduces H3K36me3, but previously an artificial super-substrate (ssK36) was identified, which is methylated >100-fold faster. The ssK36-SETD2 complex structure cannot fully explain this effect. We applied molecular dynamics (MD) simulations and biochemical experiments to unravel the mechanistic basis of the increased methylation of ssK36, considering peptide conformations in solution, association of peptide and enzyme, and formation of transition-state (TS) like conformations of the enzyme-peptide complex. We observed in MD and FRET experiments that ssK36 adopts a hairpin conformation in solution with V35 and K36 placed in the loop. The hairpin conformation has easier access into the active site of SETD2 and it unfolds during the association process. Peptide methylation experiments revealed that introducing a stable hairpin conformation in the H3K36 peptide increased its methylation by SETD2. In MD simulations of enzyme-peptide complexes, the ssK36 peptide approached TS-like structures more frequently than H3K36 and distinct, substrate-specific TS-like structures were observed. Hairpin association, hairpin unfolding during association, and substrate-specific catalytically competent conformations may also be relevant for other PKMTs and hairpins could represent a promising starting point for SETD2 inhibitor development.
Collapse
Affiliation(s)
- Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Michel Choudalakis
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Mina S Khella
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.,Biochemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, 11566, Egypt
| | - Henrique Carvalho
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
8
|
Su J, Sun T, Wang Y, Shen Y. Conformational Dynamics of Glucagon-like Peptide-2 with Different Electric Field. Polymers (Basel) 2022; 14:2722. [PMID: 35808767 PMCID: PMC9269336 DOI: 10.3390/polym14132722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022] Open
Abstract
Molecular dynamics (MD) simulation was used to study the influence of electric field on Glucagon-like Peptide-2 (GLP-2). Different electric field strengths (0 V/nm ≤ E ≤ 1 V/nm) were mainly carried out on GLP-2. The structural changes in GLP-2 were analyzed by the Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration (Rg), Solvent Accessible Surface Area (SASA), Secondary Structure and the number of hydrogen bonds. The stable α—helix structure of GLP-2 was unwound and transformed into an unstable Turn and Coil structure since the stability of the GLP-2 protein structure was reduced under the electric field. Our results show that the degree of unwinding of the GLP-2 structure was not linearly related to the electric field intensity. E = 0.5 V/nm was a special point where the degree of unwinding of the GLP-2 structure reached the maximum at this electric field strength. Under a weak electric field, E < 0.5 V/nm, the secondary structure of GLP-2 becomes loose, and the entropy of the chain increases. When E reaches a certain value (E > 0.5 V/nm), the electric force of the charged residues reaches equilibrium, along the z-direction. Considering the confinement of moving along another direction, the residue is less free. Thus, entropy decreases and enthalpy increases, which enhance the interaction of adjacent residues. It is of benefit to recover hydrogen bonds in the middle region of the protein. These investigations, about the effect of an electric field on the structure of GLP-2, can provide some theoretical basis for the biological function of GLP-2 in vivo.
Collapse
Affiliation(s)
| | - Tingting Sun
- Department of Applied Physics, Zhejiang University of Science and Technology, No. 318 Liuhe Road, Hangzhou 310018, China; (J.S.); (Y.S.)
| | - Yan Wang
- Department of Applied Physics, Zhejiang University of Science and Technology, No. 318 Liuhe Road, Hangzhou 310018, China; (J.S.); (Y.S.)
| | | |
Collapse
|