1
|
Wang J, Guan Y, Wang Y, Tan J, Cao Z, Ding Y, Gao L, Fu H, Chen X, Lin J, Shen N, Fu X, Wang F, Mao J, Hu L. Disease pathogenicity in Hutchinson-Gilford progeria syndrome mice: insights from lung-associated alterations. Mol Med 2025; 31:114. [PMID: 40128656 PMCID: PMC11934591 DOI: 10.1186/s10020-025-01165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by accelerated aging, impaired growth, disrupted lipid metabolism, and reduced lifespan. METHODS Prior research has primarily focused on cardiovascular manifestations, our research sheds light on multiple organs that underwent significant age-related changes validated by tissue cross-sections H&E, Masson's trichrome, and β-galactosidase staining. RESULTS Among these pathologies tissues, the lung was severely affected and substantiated by clinical data of pulmonary anomalies from our HGPS patients. Biochemical and histological analyses of lung tissue from the HGPS mouse model revealed elevated Progerin expression, abnormal NAD metabolism, cellular senescence markers (higher level of p16 and p27, lower level of ki67), and various age-related morphology changes, including fibrosis, inflammation, and thickening of alveolar walls. Transcriptomic analyses of lung tissue indicated that down-regulated genes (Thy1, Tnc, Cspg4, Ccr1) were associated with extracellular space, immune response, calcium signaling pathway, osteoclast differentiation, and lipid binding pathway. CONCLUSIONS This study unveiled the previously overlooked organs involved in HGPS pathogenesis and suggested a specific emphasis on the lung. Our findings suggest that pulmonary abnormalities may contribute to disease progression, warranting further investigation into their role in HGPS monitoring and management.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Yuelin Guan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Yue Wang
- Hubei Normal University, Huangshi, 435002, China
| | - Junyi Tan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Zhongkai Cao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Yuhan Ding
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Langping Gao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Xiangjun Chen
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou, 310020, China
| | - Jianyu Lin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Ning Shen
- Liangzhu Laboratory of Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xudong Fu
- Liangzhu Laboratory of Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Fangqin Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China.
| | - Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China.
| |
Collapse
|
2
|
Berchtold MW, Villalobo A. Ca 2+/calmodulin signaling in organismal aging and cellular senescence: Impact on human diseases. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167583. [PMID: 39579800 DOI: 10.1016/j.bbadis.2024.167583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Molecular mechanisms of aging processes at the level of organisms and cells are in the focus of a large number of research laboratories. This research culminated in recent breakthroughs, which contributed to the better understanding of the natural aging process and aging associated malfunctions leading to age-related diseases. Ca2+ in connection with its master intracellular sensor protein calmodulin (CaM) regulates a plethora of crucial cellular processes orchestrating a wide range of signaling processes. This review focuses on the involvement of Ca2+/CaM in cellular mechanisms, which are associated with normal aging, as well as playing a role in the development of diseases connected with signaling processes during aging. We specifically highlight processes that involve inactivation of proteins, which take part in Ca2+/CaM regulatory systems by oxygen or nitrogen free radical species, during organismal aging and cellular senescence. As examples of organs where aging processes have recently been investigated, we chose to review the literature on molecular aging processes with involvement of Ca2+/CaM in heart and neuronal diseases, as well as in cancer and metabolic diseases, all deeply affected by aging. In addition, this article focuses on cellular senescence, a mechanism that may contribute to aging processes and therefore has been proposed as a target to interfere with the progression of age-associated diseases.
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| | - Antonio Villalobo
- Cancer and Human Molecular Genetics Area, Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain.
| |
Collapse
|
3
|
Padhiar AA, Yang X, Zaidi SAA, Li Z, Liao J, Shu W, Chishti AA, He L, Alam G, Faqeer A, Ali I, Zhang S, Wang T, Liu T, Zhou M, Wang G, Zhou Y, Zhou G. MAM-STAT3-Driven Mitochondrial Ca +2 Upregulation Contributes to Immunosenescence in Type A Mandibuloacral Dysplasia Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407398. [PMID: 39661729 PMCID: PMC11791949 DOI: 10.1002/advs.202407398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Individuals with homozygous laminA/C p.R527C mutations manifest a severe form of Mandibuloacral dysplasia-(MAD) and exhibit overlapping progeroid symptoms, for which the underlying molecular pathology remains unknown. Herein, it is shown that MAD patients achieved inflammaging with different pro-inflammatory cytokines compared to progeria-(HGPS) patient. Characterization of MAD iPSC-derived Mesenchymal stem cells (MAD-iMSC) uncovers deregulated mitochondrial Ca+2 as the primary cause of inflammaging, mediated through inflammasome formation rather than the cGAS-STING pathway. Moreover, MAD-iMSCs extracellular vesicles (EVs) can also upregulate mitochondrial Ca+2 in healthy cells. This deregulated Ca+2 homeostasis is indirectly mediated by mitochondrial calcium mediator, signal transducer, and activator of transcription-3 (STAT3), situated on the mitochondrial associated membrane (MAM). Inflammaging is mitigated by various FDA-approved MAM-STAT3 upstream inhibitors, such as (Tocilizumab) or by correcting R527C mutation with CRISPR/CAS9. These results provide new insights into MAD disease and propose targeting defective mitochondrial Ca+2 homeostasis as a promising therapy for reversing immunosenescence.
Collapse
Affiliation(s)
- Arshad Ahmed Padhiar
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCT06269‐3043USA
- Senotherapeutics Ltd.Hangzhou311100China
| | - Xiaohong Yang
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
- Department of Laboratory MedicinePuning Traditional Chinese Medicine HospitalPuningGuangdong515343China
| | - Syed Aqib Ali Zaidi
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Zhu Li
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Jinqi Liao
- Senotherapeutics Ltd.Hangzhou311100China
- Lungene Biotech Ltd.Yinxing Scientific BuildingShenzhen510086China
| | - Wei Shu
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle HeathGuilin Medical UniversityGuilin541004China
| | - Arif Ali Chishti
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Liangge He
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Gulzar Alam
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Abdullah Faqeer
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Ilyas Ali
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Shuai Zhang
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
- Brain Research Centre and Department of BiologySouthern University of Science and Technology1088 Xueyuan Blvd, Nanshan DistrictShenzhenGuangdong518055China
| | - Ting Wang
- Senotherapeutics Ltd.Hangzhou311100China
- Lungene Biotech Ltd.Yinxing Scientific BuildingShenzhen510086China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle HeathGuilin Medical UniversityGuilin541004China
| | - Tao Liu
- Department of Tumor ImmunotherapyShenzhen Luohu People's HospitalThe Third Affiliated Hospital of Shenzhen UniversityShenzhenGuangdong518001China
| | - Meiling Zhou
- Department of Tumor ImmunotherapyShenzhen Luohu People's HospitalThe Third Affiliated Hospital of Shenzhen UniversityShenzhenGuangdong518001China
| | - Gang Wang
- Senotherapeutics Ltd.Hangzhou311100China
| | - Yan Zhou
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
- Senotherapeutics Ltd.Hangzhou311100China
- Lungene Biotech Ltd.Yinxing Scientific BuildingShenzhen510086China
| | - Guangqian Zhou
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
- Senotherapeutics Ltd.Hangzhou311100China
- Lungene Biotech Ltd.Yinxing Scientific BuildingShenzhen510086China
| |
Collapse
|
4
|
Wilke MVMB, Wick M, Schwab TL, Starosta RT, Clark KJ, Connolly HM, Klee EW. Nuclear Abnormalities in LMNA p.(Glu2Lys) Variant Segregating with LMNA-Associated Cardiocutaneous Progeria Syndrome. Genes (Basel) 2024; 15:112. [PMID: 38255001 PMCID: PMC10815864 DOI: 10.3390/genes15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The LMNA gene encodes lamin A and lamin C, which play important roles in nuclear organization. Pathogenic variants in LMNA cause laminopathies, a group of disorders with diverse phenotypes. There are two main groups of disease-causing variants: missense variants affecting dimerization and intermolecular interactions, and heterozygous substitutions activating cryptic splice sites. These variants lead to different disorders, such as dilated cardiomyopathy and Hutchinson-Gilford progeria (HGP). Among these, the phenotypic terms for LMNA-associated cardiocutaneous progeria syndrome (LCPS), which does not alter lamin A processing and has an older age of onset, have been described. Here, we present the workup of an LMNA variant of uncertain significance, NM_170707.2 c. 4G>A, p.(Glu2Lys), in a 36-year-old female with severe calcific aortic stenosis, a calcified mitral valve, premature aging, and a family history of similar symptoms. Due to the uncertainty of in silico predictions for this variant, an assessment of nuclear morphology was performed using the immunocytochemistry of stable cell lines to indicate whether the p.(Glu2Lys) had a similar pathogenic mechanism as a previously described pathogenic variant associated with LCPS, p.Asp300Gly. Indirect immunofluorescence analysis of nuclei from stable cell lines showed abnormal morphology, including lobulation and occasional ringed nuclei. Relative to the controls, p.Glu2Lys and p.Asp300Gly nuclei had significantly (p < 0.001) smaller average nuclear areas than controls (mean = 0.10 units, SD = 0.06 for p.Glu2Lys; and mean = 0.09 units, SD = 0.05 for p.Asp300Gly versus mean = 0.12, SD = 0.05 for WT). After functional studies and segregation studies, this variant was upgraded to likely pathogenic. In summary, our findings suggest that p.Glu2Lys impacts nuclear morphology in a manner comparable to what was observed in p.Asp300Gly cells, indicating that the variant is the likely cause of the LCPS segregating within this family.
Collapse
Affiliation(s)
| | - Myra Wick
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Tanya L. Schwab
- Department of Molecular Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rodrigo Tzovenos Starosta
- Division of Medical Genetics and Genomics, Washington University in Saint Louis, Saint Louis, MO 63130, USA;
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Karl J. Clark
- Department of Biochemical and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Eric W. Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Quintana‐Torres D, Valle‐Cao A, Bousquets‐Muñoz P, Freitas‐Rodríguez S, Rodríguez F, Lucia A, López‐Otín C, López‐Soto A, Folgueras AR. The secretome atlas of two mouse models of progeria. Aging Cell 2023; 22:e13952. [PMID: 37565451 PMCID: PMC10577534 DOI: 10.1111/acel.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by nuclear envelope alterations that lead to accelerated aging and premature death. Several studies have linked health and longevity to cell-extrinsic mechanisms, highlighting the relevance of circulating factors in the aging process as well as in age-related diseases. We performed a global plasma proteomic analysis in two preclinical progeroid models (LmnaG609G/G609G and Zmpste24-/- mice) using aptamer-based proteomic technology. Pathways related to the extracellular matrix, growth factor response and calcium ion binding were among the most enriched in the proteomic signature of progeroid samples compared to controls. Despite the global downregulation trend found in the plasma proteome of progeroid mice, several proteins associated with cardiovascular disease, the main cause of death in HGPS, were upregulated. We also developed a chronological age predictor using plasma proteome data from a cohort of healthy mice (aged 1-30 months), that reported an age acceleration when applied to progeroid mice, indicating that these mice exhibit an "old" plasma proteomic signature. Furthermore, when compared to naturally-aged mice, a great proportion of differentially expressed circulating proteins in progeroid mice were specific to premature aging, highlighting secretome-associated differences between physiological and accelerated aging. This is the first large-scale profiling of the plasma proteome in progeroid mice, which provides an extensive list of candidate circulating plasma proteins as potential biomarkers and/or therapeutic targets for further exploration and hypothesis generation in the context of both physiological and premature aging.
Collapse
Affiliation(s)
- Diego Quintana‐Torres
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Alejandra Valle‐Cao
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Pablo Bousquets‐Muñoz
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
| | - Sandra Freitas‐Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
| | - Francisco Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES) and Instituto de Investigación 12 de Octubre (i+12)MadridSpain
- Faculty of Sport SciencesUniversidad EuropeaMadridSpain
| | - Carlos López‐Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
| | - Alejandro López‐Soto
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Alicia R. Folgueras
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| |
Collapse
|
6
|
Pande S, Ghosh DK. Nuclear proteostasis imbalance in laminopathy-associated premature aging diseases. FASEB J 2023; 37:e23116. [PMID: 37498235 DOI: 10.1096/fj.202300878r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.
Collapse
Affiliation(s)
- Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Debasish Kumar Ghosh
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Mato-Basalo R, Lucio-Gallego S, Alarcón-Veleiro C, Sacristán-Santos M, Quintana MDPM, Morente-López M, de Toro FJ, Silva-Fernández L, González-Rodríguez A, Arufe MC, Labora JAF. Action Mechanisms of Small Extracellular Vesicles in Inflammaging. Life (Basel) 2022; 12:546. [PMID: 35455036 PMCID: PMC9028066 DOI: 10.3390/life12040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
The accumulation process of proinflammatory components in the body due to aging influences intercellular communication and is known as inflammaging. This biological mechanism relates the development of inflammation to the aging process. Recently, it has been reported that small extracellular vesicles (sEVs) are mediators in the transmission of paracrine senescence involved in inflammatory aging. For this reason, their components, as well as mechanisms of action of sEVs, are relevant to develop a new therapy called senodrugs (senolytics and senomorphic) that regulates the intercellular communication of inflammaging. In this review, we include the most recent and relevant studies on the role of sEVs in the inflammatory aging process and in age-related diseases such as cancer and type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - María C. Arufe
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Centro de Invesigaciones Científicas Avanzadas (CICA), Universidade da Coruña, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (R.M.-B.); (S.L.-G.); (C.A.-V.); (M.S.-S.); (M.d.P.M.Q.); (M.M.-L.); (F.J.d.T.); (L.S.-F.); (A.G.-R.)
| | - Juan Antonio Fafián Labora
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Centro de Invesigaciones Científicas Avanzadas (CICA), Universidade da Coruña, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (R.M.-B.); (S.L.-G.); (C.A.-V.); (M.S.-S.); (M.d.P.M.Q.); (M.M.-L.); (F.J.d.T.); (L.S.-F.); (A.G.-R.)
| |
Collapse
|