1
|
Cheng KC, Chong PCT, Hsieh CC, Lin YT, Ye CH, Khumsupan D, Lu JJ, Yu WC, Cheng KW, Yap KY, Kou WS, Cheng MT, Hsu CC, Sheen LY, Lin SP, Wei AC, Yu SH. Identification of anti-fibrotic and pro-apoptotic bioactive compounds from Ganoderma formosanum and their possible mechanisms in modulating TGF-β1-induced lung fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118008. [PMID: 38458343 DOI: 10.1016/j.jep.2024.118008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-β1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-β1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-β receptor 1. CONCLUSION Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.
Collapse
Affiliation(s)
- Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Department of Optometry, Asia University, No. 500, Lioufeng Rd., Wufeng, Taichung, Taiwan. R.O.C; Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, Taiwan. R.O.C
| | - Patrick Chun Theng Chong
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Yu-Te Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. R.O.C
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Darin Khumsupan
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Jheng-Jhe Lu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Kai-Wen Cheng
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Weng Si Kou
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Meng-Tsung Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, No.33, Linsen S. Rd., Taipei, 100025, Taiwan. R.O.C
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Leeuwenhoek Laboratories Co. Ltd., No. 71, Fanglan Rd, Taipei, 106038, Taiwan. R.O.C
| | - Lee-Yan Sheen
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, Taiwan. R.O.C
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. R.O.C
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C.
| |
Collapse
|
2
|
Shorrock HK, Lennon CD, Aliyeva A, Davey EE, DeMeo CC, Pritchard CE, Planco L, Velez JM, Mascorro-Huamancaja A, Shin DS, Cleary JD, Berglund JA. Widespread alternative splicing dysregulation occurs presymptomatically in CAG expansion spinocerebellar ataxias. Brain 2024; 147:486-504. [PMID: 37776516 PMCID: PMC10834251 DOI: 10.1093/brain/awad329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 09/03/2023] [Indexed: 10/02/2023] Open
Abstract
The spinocerebellar ataxias (SCAs) are a group of dominantly inherited neurodegenerative diseases, several of which are caused by CAG expansion mutations (SCAs 1, 2, 3, 6, 7 and 12) and more broadly belong to the large family of over 40 microsatellite expansion diseases. While dysregulation of alternative splicing is a well defined driver of disease pathogenesis across several microsatellite diseases, the contribution of alternative splicing in CAG expansion SCAs is poorly understood. Furthermore, despite extensive studies on differential gene expression, there remains a gap in our understanding of presymptomatic transcriptomic drivers of disease. We sought to address these knowledge gaps through a comprehensive study of 29 publicly available RNA-sequencing datasets. We identified that dysregulation of alternative splicing is widespread across CAG expansion mouse models of SCAs 1, 3 and 7. These changes were detected presymptomatically, persisted throughout disease progression, were repeat length-dependent, and were present in brain regions implicated in SCA pathogenesis including the cerebellum, pons and medulla. Across disease progression, changes in alternative splicing occurred in genes that function in pathways and processes known to be impaired in SCAs, such as ion channels, synaptic signalling, transcriptional regulation and the cytoskeleton. We validated several key alternative splicing events with known functional consequences, including Trpc3 exon 9 and Kcnma1 exon 23b, in the Atxn1154Q/2Q mouse model. Finally, we demonstrated that alternative splicing dysregulation is responsive to therapeutic intervention in CAG expansion SCAs with Atxn1 targeting antisense oligonucleotide rescuing key splicing events. Taken together, these data demonstrate that widespread presymptomatic dysregulation of alternative splicing in CAG expansion SCAs may contribute to disease onset, early neuronal dysfunction and may represent novel biomarkers across this devastating group of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Claudia D Lennon
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Asmer Aliyeva
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| | - Emily E Davey
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Cristina C DeMeo
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | | | - Lori Planco
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Jose M Velez
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| | | | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - John D Cleary
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - J Andrew Berglund
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| |
Collapse
|
3
|
Xie ST, Fan WC, Zhao XS, Ma XY, Li ZL, Zhao YR, Yang F, Shi Y, Rong H, Cui ZS, Chen JY, Li HZ, Yan C, Zhang Q, Wang JJ, Zhang XY, Gu XP, Ma ZL, Zhu JN. Proinflammatory activation of microglia in the cerebellum hyperexcites Purkinje cells to trigger ataxia. Pharmacol Res 2023; 191:106773. [PMID: 37068531 DOI: 10.1016/j.phrs.2023.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Specific medications to combat cerebellar ataxias, a group of debilitating movement disorders characterized by difficulty with walking, balance and coordination, are still lacking. Notably, cerebellar microglial activation appears to be a common feature in different types of ataxic patients and rodent models. However, direct evidence that cerebellar microglial activation in vivo is sufficient to induce ataxia is still lacking. Here, by employing chemogenetic approaches to manipulate cerebellar microglia selectively and directly, we found that specific chemogenetic activation of microglia in the cerebellar vermis directly leads to ataxia symptoms in wild-type mice and aggravated ataxic motor deficits in 3-acetylpyridine (3-AP) mice, a classic mouse model of cerebellar ataxia. Mechanistically, cerebellar microglial proinflammatory activation induced by either chemogenetic M3D(Gq) stimulation or 3-AP modeling hyperexcites Purkinje cells (PCs), which consequently triggers ataxia. Blockade of microglia-derived TNF-α, one of the most important proinflammatory cytokines, attenuates the hyperactivity of PCs driven by microglia. Moreover, chemogenetic inhibition of cerebellar microglial activation or suppression of cerebellar microglial activation by PLX3397 and minocycline reduces the production of proinflammatory cytokines, including TNF-α, to effectively restore the overactivation of PCs and alleviate motor deficits in 3-AP mice. These results suggest that cerebellar microglial activation may aggravate the neuroinflammatory response and subsequently induce dysfunction of PCs, which in turn triggers ataxic motor deficits. Our findings thus reveal a causal relationship between proinflammatory activation of cerebellar microglia and ataxic motor symptoms, which may offer novel evidence for therapeutic intervention for cerebellar ataxias by targeting microglia and microglia-derived inflammatory mediators.
Collapse
Affiliation(s)
- Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen-Chu Fan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xian-Sen Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ze-Lin Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Ran Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Fa Yang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ying Shi
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hui Rong
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhi-San Cui
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun-Yi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Ping Gu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Zheng-Liang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Ye C, Wei X, Shi T, Sun X, Xu N, Gao C, Zou W. Genome-scale metabolic network models: from first-generation to next-generation. Appl Microbiol Biotechnol 2022; 106:4907-4920. [PMID: 35829788 DOI: 10.1007/s00253-022-12066-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/24/2022] [Accepted: 07/02/2022] [Indexed: 11/26/2022]
Abstract
Over the last two decades, thousands of genome-scale metabolic network models (GSMMs) have been constructed. These GSMMs have been widely applied in various fields, ranging from network interaction analysis, to cell phenotype prediction. However, due to the lack of constraints, the prediction accuracy of first-generation GSMMs was limited. To overcome these limitations, the next-generation GSMMs were developed by integrating omics data, adding constrain condition, integrating different biological models, and constructing whole-cell models. Here, we review recent advances of GSMMs from the first generation to the next generation. Then, we discuss the major application of GSMMs in industrial biotechnology, such as predicting phenotypes and guiding metabolic engineering. In addition, human health applications, including understanding biological mechanisms, discovering biomarkers and drug targets, are also summarized. Finally, we address the challenges and propose new trend of GSMMs. KEY POINTS: •This mini-review updates the literature on almost all published GSMMs since 1999. •Detailed insights into the development of the first- and next-generation GSMMs. •The application of GSMMs is summarized, and the prospects of integrating machine learning are emphasized.
Collapse
Affiliation(s)
- Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Xinyu Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Nan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644005, China.
| |
Collapse
|
5
|
IGF-1 as a Potential Therapy for Spinocerebellar Ataxia Type 3. Biomedicines 2022; 10:biomedicines10020505. [PMID: 35203722 PMCID: PMC8962315 DOI: 10.3390/biomedicines10020505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
Although the effects of growth hormone (GH) therapy on spinocerebellar ataxia type 3 (SCA3) have been examined in transgenic SCA3 mice, it still poses a nonnegligible risk of cancer when used for a long term. This study investigated the efficacy of IGF-1, a downstream mediator of GH, in vivo for SCA3 treatment. IGF-1 (50 mg/kg) or saline, once a week, was intraperitoneally injected to SCA3 84Q transgenic mice harboring a human ATXN3 gene with a pathogenic expanded 84 cytosine–adenine–guanine (CAG) repeat motif at 9 months of age. Compared with the control mice harboring a 15 CAG repeat motif, the SCA3 84Q mice treated with IGF-1 for 9 months exhibited the improvement only in locomotor function and minimized degeneration of the cerebellar cortex as indicated by the survival of more Purkinje cells with a more favorable mitochondrial function along with a decrease in oxidative stress caused by DNA damage. These findings could be attributable to the inhibition of mitochondrial fission, resulting in mitochondrial fusion, and decreased immunofluorescence staining in aggresome formation and ataxin-3 mutant protein levels, possibly through the enhancement of autophagy. The findings of this study show the therapeutic potential effect of IGF-1 injection for SCA3 to prevent the exacerbation of disease progress.
Collapse
|