1
|
Wang R, Zhang H, Yi Q, Wang YP, Xu H, Tan B, Zhu J. Nicotinamide riboside promoted cardiac energetics and alleviated doxorubicin-induced cardiotoxicity via SIRT1/ERRα signal in human pluripotent stem cells-derived cardiomyocytes. Life Sci 2025; 373:123685. [PMID: 40324647 DOI: 10.1016/j.lfs.2025.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Doxorubicin is an antineoplastic chemotherapeutic drug that causes cardiotoxicity with energetics impairment and oxidative stress. Nicotinamide ribose (NR) is the precursor of NAD+ and has demonstrated beneficial effects in several animal models of cardiovascular disease. This study aimed to test the role and mechanism of nicotinamide ribose on human induced pluripotent stem cell-differentiated cardiomyocytes (HiPSCs-CMs) under normal and doxorubicin-treated states. We found that NR increased mitochondrial fusion and integrity in HiPSCs-CMs, promoted mitochondrial oxidative phosphorylation levels and ATP output, and increased ERRα expression. Inhibition of SIRT1 reversed the beneficial effects of NR. Protein-protein docking and immunoprecipitation showed that SIRT1 may bind directly to ERRα and regulates ERRα expression. Agonism of SIRT1 shows a facilitating effect on mitochondrial energetics, an effect that is counteracted by inhibitors of ERRα. Furthermore, NR promotes mitochondrial energetics via SIRT1/ERRα in doxorubicin-induced cardiac cytotoxicity, reduces cardiomyocyte oxidative stress injury, and attenuates apoptosis. Our findings reveal beneficial effects of nicotinamide ribose on HiPSCs-CMs under normal or disease conditions. In conclusion, our study provides the basis for advancing the clinical translation of nicotinamide ribose into the clinic.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Hua Zhang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Qin Yi
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Yun Peng Wang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Hao Xu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Jing Zhu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China.
| |
Collapse
|
2
|
Wang W, Wang XM, Zhang HL, Zhao R, Wang Y, Zhang HL, Song ZJ. Molecular and metabolic landscape of adenosine triphosphate-induced cell death in cardiovascular disease. World J Cardiol 2024; 16:689-706. [PMID: 39734818 PMCID: PMC11669974 DOI: 10.4330/wjc.v16.i12.689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
The maintenance of intracellular and extracellular adenosine triphosphate (ATP) levels plays a pivotal role in cardiac function. In recent years, burgeoning attention has been directed towards ATP-induced cell death (AICD), revealing it as a distinct cellular demise pathway triggered by heightened extracellular ATP concentrations, distinguishing it from other forms of cell death such as apoptosis and necrosis. AICD is increasingly acknowledged as a critical mechanism mediating the pathogenesis and progression of various cardiovascular maladies, encompassing myocardial ischemia-reperfusion injury, sepsis-induced cardiomyopathy, hypertrophic cardiomyopathy, arrhythmia, and diabetic cardiomyopathy. Consequently, a comprehensive understanding of the molecular and metabolic underpinnings of AICD in cardiac tissue holds promise for the prevention and amelioration of cardiovascular diseases. This review first elucidates the vital physiological roles of ATP in the cardiovascular system, subsequently delving into the intricate molecular mechanisms and metabolic signatures governing AICD. Furthermore, it addresses the potential therapeutic targets implicated in mitigating AICD for treating cardiovascular diseases, while also delineating the current constraints and future avenues for these innovative therapeutic targets, thereby furnishing novel insights and strategies for the prevention and management of cardiovascular disorders.
Collapse
Affiliation(s)
- Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Xue-Mei Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 73000, Gansu Province, China
| | - Hao-Long Zhang
- University Sains Malaysia, Advanced Medical and Dental Institute, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Yong Wang
- Department of Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
3
|
Bu F, Chen L, Sun Y, Zhao B, Wang R. Insight into the Binding Interaction between PEDCs and hERRγ Utilizing Molecular Docking and Molecular Dynamics Simulations. Molecules 2024; 29:3256. [PMID: 39064835 PMCID: PMC11278984 DOI: 10.3390/molecules29143256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Phenolic environmental endocrine-disrupting chemicals (PEDCs) are persistent EDCs that are widely found in food packaging materials and environmental media and seriously threaten human health and ecological security. Human estrogen-related receptor γ (hERRγ) has been proposed as a mediator for the low-dose effects of many environmental PEDCs; however, the atomic-level descriptions of dynamical structural features and interactions of hERRγ and PEDCs are still unclarified. Herein, how three PEDCs, 4-(1-methylpropyl)phenol (4-sec-butylphenol), 5,6,7,8-tetrahydro-2-naphthol (tetrahydro-2-napthol), and 2,2-bis(4-hydroxy-3,5-dimethoxyphenyl)propane (BP(2,2)(Me)), interact with hERRγ to produce its estrogenic disruption effects was studied. Molecular docking and multiple molecular dynamics (MD) simulations were first conducted to distinguish the detailed interaction pattern of hERRγ with PEDCs. These binding structures revealed that residues around Leu271, Leu309, Leu345, and Phe435 are important when binding with PEDCs. Furthermore, the binding energies of PEDCs with hERRγ were also characterized using the molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) and solvated interaction energy (SIE) methods, and the results showed that the interactions of CH-π, π-π, and hydrogen bonds are the major contributors for hERRγ binding to these three PEDCs. What is striking is that the methoxide groups of BP(2,2)(Me), as hydrophobic groups, can help to reduce the binding energy of PEDCs binding with hERRγ. These results provide important guidance for further understanding the influence of PEDCs on human health problems.
Collapse
Affiliation(s)
- Fanqiang Bu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; (F.B.); (Y.S.); (B.Z.)
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; (F.B.); (Y.S.); (B.Z.)
| | - Ying Sun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; (F.B.); (Y.S.); (B.Z.)
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; (F.B.); (Y.S.); (B.Z.)
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar 161006, China
| | - Ruige Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; (F.B.); (Y.S.); (B.Z.)
| |
Collapse
|
4
|
Rubio-Tomás T, Soler-Botija C, Martínez-Estrada O, Villena JA. Transcriptional control of cardiac energy metabolism in health and disease: Lessons from animal models. Biochem Pharmacol 2024; 224:116185. [PMID: 38561091 DOI: 10.1016/j.bcp.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Cardiac ATP production is tightly regulated in order to satisfy the evolving energetic requirements imposed by different cues during health and pathological conditions. In order to sustain high ATP production rates, cardiac cells are endowed with a vast mitochondrial network that is essentially acquired during the perinatal period. Nevertheless, adult cardiac cells also adapt their mitochondrial mass and oxidative function to changes in energy demand and substrate availability by fine-tuning the pathways and mitochondrial machinery involved in energy production. The reliance of cardiac cells on mitochondrial metabolism makes them particularly sensitive to alterations in proper mitochondrial function, so that deficiency in energy production underlies or precipitates the development of heart diseases. Mitochondrial biogenesis is a complex process fundamentally controlled at the transcriptional level by a network of transcription factors and co-regulators, sometimes with partially redundant functions, that ensure adequate energy supply to the working heart. Novel uncovered regulators, such as RIP140, PERM1, MED1 or BRD4 have been recently shown to modulate or facilitate the transcriptional activity of the PGC-1s/ERRs/PPARs regulatory axis, allowing cardiomyocytes to adapt to a variety of physiological or pathological situations requiring different energy provision. In this review, we summarize the current knowledge on the mechanisms that regulate cardiac mitochondrial biogenesis, highlighting the recent discoveries of new transcriptional regulators and describing the experimental models that have provided solid evidence of the relevant contribution of these factors to cardiac function in health and disease.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion GR-70013, Crete, Greece
| | - Carolina Soler-Botija
- ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBER on Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Josep A Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
5
|
Gao Y, Chen B, Han Y, Lu J, Li X, Tian A, Zhang L, Wang B, Hong Y, Liu J, Li Y, Bilige W, Zhang H, Zheng X, Li J. Prognostic Value of a Multi-mRNA Signature for 1-Year All-Cause Death in Hospitalized Patients With Heart Failure With a Preserved Ejection Fraction. Circ Heart Fail 2024; 17:e011118. [PMID: 38847104 DOI: 10.1161/circheartfailure.123.011118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/26/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction is a major global public health problem, while effective risk stratification tools are still lacking. We sought to construct a multi-mRNA signature to predict 1-year all-cause death. METHODS We selected 30 patients with heart failure with preserved ejection fraction who died during 1-year follow-up and 30 who survived in the discovery set. One hundred seventy-one and 120 patients with heart failure with preserved ejection fraction were randomly selected as a test set and a validation set, respectively. We performed mRNA microarrays in all patients. RESULTS We constructed a 5-mRNA signature for predicting 1-year all-cause death. The scores of the 5-mRNA signature were significantly associated with the 1-year risk of all-cause death in both the test set (hazard ratio, 2.72 [95% CI, 1.98-3.74]; P<0.001) and the validation set (hazard ratio, 3.95 [95% CI, 2.40-6.48]; P<0.001). Compared with a reference model, which included sex, ASCEND-HF (Acute Study of Clinical Effectiveness of Nesiritide in Decompensated Heart Failure) score, history of HF and NT-proBNP (N-terminal pro-B-type natriuretic peptide), the 5-mRNA signature had a better discrimination capability, with an increased area under the curve from 0.696 to 0.813 in the test set and from 0.712 to 0.848 in the validation set. A composite model integrating the 5-mRNA risk score and variables in the reference model demonstrated an excellent discrimination capability, with an area under the curve of 0.861 (95% CI, 0.784-0.939) in the test set and an area under the curve of 0.859 (95% CI, 0.755-0.963) in the validation set. The net reclassification improvement and integrated discrimination improvement indicated that the composite model significantly improved patient classification compared with the reference model in both sets (P<0.001). CONCLUSIONS The 5-mRNA signature is a promising predictive tool for 1-year all-cause death and shows improved prognostic power over the established risk scores and NT-proBNP in patients with heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Yan Gao
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Bowang Chen
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Yi Han
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Jiapeng Lu
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Xi Li
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Aoxi Tian
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Lihua Zhang
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Bin Wang
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Yun Hong
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Jiamin Liu
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Yan Li
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Wuhan Bilige
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Haibo Zhang
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Xin Zheng
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
| | - Jing Li
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (Y.G., B.C., Y. Han, J. Lu, X. L., A.T., L.Z., B.W., Y. Hong, J. Liu, Y.L., W.B., H.Z., X.Z., J. Li)
- Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University (J. Li)
| |
Collapse
|
6
|
Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol 2024; 187:38-50. [PMID: 38160640 PMCID: PMC10923079 DOI: 10.1016/j.yjmcc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Dörmann N, Hammer E, Struckmann K, Rüdebusch J, Bartels K, Wenzel K, Schulz J, Gross S, Schwanz S, Martin E, Fielitz B, Pablo Tortola C, Hahn A, Benkner A, Völker U, Felix SB, Fielitz J. Metabolic remodeling in cardiac hypertrophy and heart failure with reduced ejection fraction occurs independent of transcription factor EB in mice. Front Cardiovasc Med 2024; 10:1323760. [PMID: 38259303 PMCID: PMC10800928 DOI: 10.3389/fcvm.2023.1323760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background A metabolic shift from fatty acid (FAO) to glucose oxidation (GO) occurs during cardiac hypertrophy (LVH) and heart failure with reduced ejection fraction (HFrEF), which is mediated by PGC-1α and PPARα. While the transcription factor EB (TFEB) regulates the expression of both PPARGC1A/PGC-1α and PPARA/PPARα, its contribution to metabolic remodeling is uncertain. Methods Luciferase assays were performed to verify that TFEB regulates PPARGC1A expression. Cardiomyocyte-specific Tfeb knockout (cKO) and wildtype (WT) male mice were subjected to 27G transverse aortic constriction or sham surgery for 21 and 56 days, respectively, to induce LVH and HFrEF. Echocardiographic, morphological, and histological analyses were performed. Changes in markers of cardiac stress and remodeling, metabolic shift and oxidative phosphorylation were investigated by Western blot analyses, mass spectrometry, qRT-PCR, and citrate synthase and complex II activity measurements. Results Luciferase assays revealed that TFEB increases PPARGC1A/PGC-1α expression, which was inhibited by class IIa histone deacetylases and derepressed by protein kinase D. At baseline, cKO mice exhibited a reduced cardiac function, elevated stress markers and a decrease in FAO and GO gene expression compared to WT mice. LVH resulted in increased cardiac remodeling and a decreased expression of FAO and GO genes, but a comparable decline in cardiac function in cKO compared to WT mice. In HFrEF, cKO mice showed an improved cardiac function, lower heart weights, smaller myocytes and a reduction in cardiac remodeling compared to WT mice. Proteomic analysis revealed a comparable decrease in FAO- and increase in GO-related proteins in both genotypes. A significant reduction in mitochondrial quality control genes and a decreased citrate synthase and complex II activities was observed in hearts of WT but not cKO HFrEF mice. Conclusions TFEB affects the baseline expression of metabolic and mitochondrial quality control genes in the heart, but has only minor effects on the metabolic shift in LVH and HFrEF in mice. Deletion of TFEB plays a protective role in HFrEF but does not affect the course of LVH. Further studies are needed to elucidate if TFEB affects the metabolic flux in stressed cardiomyocytes.
Collapse
Affiliation(s)
- Niklas Dörmann
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Elke Hammer
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Karlotta Struckmann
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Julia Rüdebusch
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Kirsten Bartels
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Kristin Wenzel
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Julia Schulz
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Stefan Gross
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Stefan Schwanz
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Elisa Martin
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Britta Fielitz
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Cristina Pablo Tortola
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Hahn
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Benkner
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan B. Felix
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Jens Fielitz
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Fan L, Meng C, Wang X, Wang Y, Li Y, Lv S, Zhang J. Driving force of deteriorated cellular environment in heart failure: Metabolic remodeling. Clinics (Sao Paulo) 2023; 78:100263. [PMID: 37557005 PMCID: PMC10432917 DOI: 10.1016/j.clinsp.2023.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
Heart Failure (HF) has been one of the leading causes of death worldwide. Though its latent mechanism and therapeutic manipulation are updated and developed ceaselessly, there remain great gaps in the cognition of heart failure. High morbidity and readmission rates among HF patients are waiting to be addressed. Recent studies have found that myocardial energy metabolism was closely related to heart failure, in which substrate utilization, as well as intermediate metabolism disorders, insulin resistance, oxidative stress, and mitochondrial dysfunction, might underlie systolic dysfunction and progression of HF. This article centers on the changes and counteraction of cardiac energy metabolism in the failing heart. Therefore, targeting impaired energy provision is of great potential in the treatment of HF. And shifting the objective from traditional neurohormones to improving the cellular environment is expected to further optimize the management of HF.
Collapse
Affiliation(s)
- Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenchen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanyang Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Fox SN, McMeekin LJ, Savage CH, Joyce KL, Boas SM, Simmons MS, Farmer CB, Ryan J, Pereboeva L, Becker K, Auwerx J, Sudarshan S, Ma J, Lee A, Roberts RC, Crossman DK, Kralli A, Cowell RM. Estrogen-related receptor gamma regulates mitochondrial and synaptic genes and modulates vulnerability to synucleinopathy. NPJ Parkinsons Dis 2022; 8:106. [PMID: 35982091 PMCID: PMC9388660 DOI: 10.1038/s41531-022-00369-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Many studies implicate mitochondrial dysfunction as a key contributor to cell loss in Parkinson disease (PD). Previous analyses of dopaminergic (DAergic) neurons from patients with Lewy-body pathology revealed a deficiency in nuclear-encoded genes for mitochondrial respiration, many of which are targets for the transcription factor estrogen-related receptor gamma (Esrrg/ERRγ). We demonstrate that deletion of ERRγ from DAergic neurons in adult mice was sufficient to cause a levodopa-responsive PD-like phenotype with reductions in mitochondrial gene expression and number, that partial deficiency of ERRγ hastens synuclein-mediated toxicity, and that ERRγ overexpression reduces inclusion load and delays synuclein-mediated cell loss. While ERRγ deletion did not fully recapitulate the transcriptional alterations observed in postmortem tissue, it caused reductions in genes involved in synaptic and mitochondrial function and autophagy. Altogether, these experiments suggest that ERRγ-deficient mice could provide a model for understanding the regulation of transcription in DAergic neurons and that amplifying ERRγ-mediated transcriptional programs should be considered as a strategy to promote DAergic maintenance in PD.
Collapse
Affiliation(s)
- S N Fox
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - L J McMeekin
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - C H Savage
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
| | - K L Joyce
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - S M Boas
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - M S Simmons
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - C B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J Ryan
- NeuroInitiative, LLC, Jacksonville, FL, 32207, USA
| | - L Pereboeva
- Department of Pediatrics, Infectious Disease, Neuroscience Vector and Virus Core, University of Alabama at Birmingham, Birmingham, AL, 35223, USA
| | - K Becker
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - J Auwerx
- Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - S Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - A Lee
- NeuroInitiative, LLC, Jacksonville, FL, 32207, USA
| | - R C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - R M Cowell
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA.
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
10
|
Yamamoto T, Sano M. Deranged Myocardial Fatty Acid Metabolism in Heart Failure. Int J Mol Sci 2022; 23:996. [PMID: 35055179 PMCID: PMC8779056 DOI: 10.3390/ijms23020996] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
The heart requires fatty acids to maintain its activity. Various mechanisms regulate myocardial fatty acid metabolism, such as energy production using fatty acids as fuel, for which it is known that coordinated control of fatty acid uptake, β-oxidation, and mitochondrial oxidative phosphorylation steps are important for efficient adenosine triphosphate (ATP) production without unwanted side effects. The fatty acids taken up by cardiomyocytes are not only used as substrates for energy production but also for the synthesis of triglycerides and the replacement reaction of fatty acid chains in cell membrane phospholipids. Alterations in fatty acid metabolism affect the structure and function of the heart. Recently, breakthrough studies have focused on the key transcription factors that regulate fatty acid metabolism in cardiomyocytes and the signaling systems that modify their functions. In this article, we reviewed the latest research on the role of fatty acid metabolism in the pathogenesis of heart failure and provide an outlook on future challenges.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|