1
|
Qin CH, Zhang SM, Huo XO, Song RP, Ling J. Effects of SB939 are mediated by STAT3 to inhibit breast cancer cell metastasis-related genes. Oncol Lett 2025; 29:236. [PMID: 40151421 PMCID: PMC11948958 DOI: 10.3892/ol.2025.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
The histone deacetylase inhibitor pracinostat (SB939) may inhibit metastasis of triple-negative breast cancer by downregulating fibronectin (FN1) expression through the STAT3 signaling pathway. SB939 exhibits low cytotoxicity and is a potential targeted agent against breast cancer. The present study investigated the value of STAT3 and FN1 as breast cancer treatment targets and integrated cancer databases and bioinformatics tools to evaluate the effect of SB939 on breast cancer metastasis. Gene Set Enrichment Analysis, Gene Expression Profiling Interactive Analysis, Gene Expression Database of Normal and Tumor Tissues 2, The University of Alabama at Birmingham Cancer data analysis portal, GeneMANIA, Search Tool for the Retrieval of Interacting Genes/Proteins, LinkedOmics and Tumor Immune Estimation Resource databases were used in the present study. SB939 inhibited enrichment of the STAT3 pathway and decreased the expression of FN1. FN1 and STAT3 expression was markedly higher in breast cancer tissues compared with normal tissues. Kaplan-Meier curves demonstrated that increased expression of STAT3 and FN1 was associated with low survival in patients with breast cancer with overall, recurrence-free and disease-specific survival and FN1 having the strongest association with MMP2, which facilitating extracellular matrix degradation and metastatic niche formation. Furthermore, MMP2 exhibits crosstalk STAT3 to induce metastasis of breast cancer cells. To conclude, SB939 may be used as a small molecule compound for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Chen-Hui Qin
- Department of Oncology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Shu-Min Zhang
- Department of Oncology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Xiao-Ou Huo
- Department of Oncology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Ruo-Piao Song
- Department of Oncology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Jun Ling
- Clinical Laboratory Department, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
2
|
Zhou X, Xu Y, Fang C, Ye C, Liang W, Fan Z, Ma X, Liu A, Zhang X, Luo Q. Transcriptome and metabolome reveal the mechanism of neuroendocrine regulation in ovarian development of broiler breeders. Genomics 2025; 117:111035. [PMID: 40120699 DOI: 10.1016/j.ygeno.2025.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
The long-term selection for meat has led to the poor egg production efficiency in broiler. In this study, we analyzed the transcriptional levels of hypothalamus and ovary during the pre-laying (PP) and laying periods (LP) of broiler breeders. By combining these with the levels of reproductive hormones and ovarian metabolism, to reveal the neuroendocrine control mechanism of ovarian development. Results showed that during LP, the number of LYFs, SYFs and WFs, the thickness of the granular cell layer, and the serum LH, FSH, P4 and E2 levels were significantly increased (P < 0.05). A total of 1188 and 2481 differentially expressed genes (DEGs) were detected in hypothalamus and ovary, respectively. 1972 significantly differentially metabolites (DMs) were detected in ovary. In hypothalamus, the expression of neuroendocrine regulatory genes such as TRH, AVT, VIP, and NYB in the Neuroactive ligand-receptor interaction pathway regulated the LH and FSH secretion via the HPG axis. In ovary, the promotion of GCs proliferation may occur through the glycerophospholipid metabolism pathway, which increased the thickness of the GCs layer. This helped to receive gonadotropin signals and increased P4 and E2 secretion. Meanwhile, the decreased expression levels of ovarian development inhibitory factors in the TGF-beta signaling pathway, including BMP2, BMP4, BMP15 and AMHR2, and the increased expression levels of MMPs, including MMP9, MMP11 and MMP13, may regulate the synthesis of metabolites associated with steroid hormone secretion and ovarian development, such as E2, E2-3S, 7α-OH-DHEA, CHO and AD. These genes and metabolites may play an important role in HPG axis in regulating ovarian development.
Collapse
Affiliation(s)
- Xiaoli Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
| | - Yuhang Xu
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
| | - Cheng Fang
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
| | - Chutian Ye
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
| | - Weiming Liang
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
| | - Zhexia Fan
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
| | - Xuerong Ma
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
| | - Aijun Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China.
| | - Qingbin Luo
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Talebi SF, Seify M, Bhandari RK, Shoorei H, Oskuei SD. Fluoride-induced testicular and ovarian toxicity: evidence from animal studies. Biol Res 2025; 58:6. [PMID: 39863878 PMCID: PMC11762501 DOI: 10.1186/s40659-025-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury. In males, F exposure at different doses has been associated with reduced testis weight, reduced sperm quality in terms of count, motility, and viability, as well as abnormal sperm morphology and disruption of seminiferous tubules by altering hormone levels (especially testosterone), impairing spermatogenesis, and inducing oxidative stress and zinc deficiency. Similarly, administration of F can impact female reproductive health by affecting ovarian function, hormone levels, oocyte quality, and the regularity of the estrous cycle. However, the impact of F exposure on LH, FSH, and GnRH levels is controversial between males and females. In both males and females, F exerts its adverse effects by triggering apoptosis, autophagy, inflammation, mitochondrial dysfunction, reduction in ATP synthesis, and modulation of important genes involved in steroidogenesis. Furthermore, genetic susceptibility and individual variations in F metabolism may contribute to different responses to fluoride exposure.
Collapse
Affiliation(s)
| | - Mohammad Seify
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shahram Dabiri Oskuei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Tian Y, Wu X, Zhang Z, Li Y, Hou M, Jiang R, Li D, Zhang Y, Guo Y, Li G, Liu X, Kang X, Tian Y, Li W, Li Y. gga-miR-6634-5p Affects the proliferation and steroid hormone secretion of chicken (Gallus Gallus) granulosa cells by targeting MMP16. Poult Sci 2025; 104:104624. [PMID: 39647359 PMCID: PMC11667030 DOI: 10.1016/j.psj.2024.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024] Open
Abstract
MiRNAs are typically reported to play a negative regulatory role in post-transcriptional expression of target genes and are widely involved in a variety of biological processes such as growth, metabolism and reproduction. However, research on the role of miRNAs in the ovulation process of chicken ovaries is still insufficient compared to that in mammals. Here, we investigated the regulatory mechanisms of gga-miR-6634-5p in the growth and steroid hormone secretion of chicken granulosa cells (GCs) by targeting MMP16. We found that gga-miR-6634-5p significantly down-regulated the mRNA levels of proliferation-related genes (CCND1, CDK1, and CDK6), decreased cell viability, the number of EdU-labelled positive cells, and the percentage of S-phase cells, as analysed by quantitative real time PCR (qRT-PCR), cell counting kit-8 (CCK-8), 5-ethynyl-2'deoxyuridine (EdU) and flow cytometry analyses (P < 0.01 or P < 0.05). qRT-PCR and enzyme-linked immunosorbent assay (ELISA) results demonstrated that gga-miR-6634-5p up-regulated the expression of steroid synthesis-related genes (CYP19A1, 3β-HSD, StAR and FSHR) (P < 0.01 or P < 0.05), as well as the secretion of estradiol (E2) and progesterone (P4) (P < 0.01 or P < 0.05). Furthermore, we found that MMP16 protein and gene expression can be down-regulated by gga-miR-6634-5p and demonstrated that MMP16 is a target gene of gga-miR-6634-5p by dual luciferase reporter assay (P < 0.05). In addition, we found that MMP16 stimulated the proliferation of GCs, significantly inhibited the expression of steroid synthesis related genes (CYP19A1, StAR, 3β-HSD and FSHR), and decreased the secretion of E2 and P4 (P < 0.01 or P < 0.05), which was consistent with the inhibitory effect of gga-miR-6634-5p. It was further found by functional enrichment analysis, qRT-PCR, western blot (WB) and ELISA that MMP16 may play a regulatory role in GCs proliferation as well as steroid hormone secretion through the mTOR signaling pathway and PPAR signaling pathway. Therefore, this study demonstrates that gga-miR-6634-5p modulates the proliferation of chicken GCs and the secretion of steroid hormones by targeting MMP16, which may contribute to a better understanding of the functional mechanisms of miRNAs in the ovarian development of laying hens.
Collapse
Affiliation(s)
- Yixiang Tian
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yijie Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Meng Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yuetao Li
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
5
|
Wolosowicz M, Prokopiuk S, Kaminski TW. The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease. Int J Mol Sci 2024; 25:13691. [PMID: 39769454 PMCID: PMC11728377 DOI: 10.3390/ijms252413691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound healing, angiogenesis, and embryogenesis. It is primarily responsible for the degradation of type IV and V collagen, fibronectin, laminin, and elastin, which are essential components of the ECM. MMP-2 is secreted as an inactive pro-enzyme (proMMP-2) and activated through proteolytic cleavage, with its activity being precisely regulated by tissue inhibitors of metalloproteinases (TIMPs). Dysregulation of MMP-2 has been linked to a variety of pathological conditions, including cardiovascular diseases, diabetic complications, kidney diseases, and cancer. In cardiovascular diseases, it contributes to vascular remodeling, atherosclerosis, and aneurysms, while in fibrotic diseases, it mediates excessive ECM degradation leading to tissue scarring. In diabetes, elevated MMP-2 activity exacerbates complications such as nephropathy, retinopathy, and cardiovascular disease. In cancer, MMP-2 facilitates tumor invasion and metastasis by degrading ECM components and promoting angiogenesis. Despite its essential roles in both physiological and pathological processes, targeting MMP-2 for therapeutic purposes presents challenges due to its dual functions in tissue remodeling and repair, raising concerns about unplanned consequences such as impaired tissue healing or excessive tissue damage. These challenges underscore the need for future research to focus on developing selective modulators that can precisely balance their activity under specific disease environments. Clinical trials targeting MMP-2 modulation highlight the potential of gelatinase inhibitors, including those targeting MMP-2, to reduce tumor progression in fibrosarcoma, breast, and lung cancers. This paper reviews the structure, function, and regulation of MMP-2, its involvement in disease pathogenesis, and the potential challenges in the therapeutic implications of modulating its activity.
Collapse
Affiliation(s)
- Marta Wolosowicz
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Slawomir Prokopiuk
- Faculty of Health Sciences, University of Lomza, 14 Akademicka St., 18-400 Łomża, Poland;
| | - Tomasz W. Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Thrombosis and Hemostasis Program, VERSITI Blood Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Pande M, Kumar S, Tyagi S, Sirohi AS, Chand N, Soni YK, Mahajan S, Saha S, Sharma A, Sarika, Rajoriya JS, Anjali, Mohanty AK. Endogenous Tissue Inhibitor of Metalloproteinase-2 Levels Are Associated With High-Quality Neat Semen but Unrelated to Sperm Cryoresistance in Bulls. Reprod Domest Anim 2024; 59:e14741. [PMID: 39548759 DOI: 10.1111/rda.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) is part of the tissue inhibitors of the metalloproteinases (TIMPs) family. Its primary function is to regulate the activity of matrix metalloproteinases (MMPs) across various tissues, including those of the reproductive system. This study aimed to quantify the natural levels of TIMP-2 in seminal plasma (SP) and sperm membrane (SM) of bulls, explore potential associations between TIMP-2 levels and semen quality parameters, and examine the relationship between TIMP-2 levels and sperm cryoresistance in bulls. Thirty semen samples from Frieswal breeding bulls were categorized into two groups based on their initial progressive motility (IPM): Good (IPM ≥ 70%; n = 21) and Poor (IPM ≤ 40%; n = 9). The samples were evaluated for their quality parameters at the fresh stage, and TIMP-2 levels were measured in SP and SM using a bovine-specific ELISA kit. Following cryopreservation of Good samples (n = 21), post-thaw motility (PTM) was used to further classify samples into Freezeable (PTM ≥ 50%; n = 14) and Non-Freezable (PTM < 50%; n = 7) groups. In frozen-thawed samples, sperm attributes, kinetics, and functional parameters were assessed, and the results were correlated with retrospective TIMP-2 levels of SP/SM. Our study revealed that the quantified levels of TIMP-2 ranged from 100.27 to 535.95 ng/L in SP and from 0 to 115.78 ng/10 million spermatozoa in SM. TIMP-2 levels in both SP and SM were significantly higher in Good ejaculates compared to Poor ejaculates (p < 0.01). Furthermore, total TIMP-2 levels in the SP/SM of semen samples from bulls showed a positive correlation with fresh semen attributes. However, SP/SM TIMP-2 levels in the Freezeable group did not show any significant differences compared to the Non-Freezable group in post-thaw semen quality attributes, kinetic parameters, and functional tests, except for a significant positive correlation (r = 0.530, p < 0.05) between sperm DNA integrity and SP-TIMP-2 levels. In conclusion, the findings suggested that TIMP-2 can be a positive regulator of semen quality at the neat stage. However, when it comes to the resilience of sperm to cryopreservation, the levels of TIMP-2 do not seem to exert any significant influence in breeding bulls.
Collapse
Affiliation(s)
- M Pande
- Animal Physiology Laboratory, Division of Cattle Physiology and Reproduction, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, India
| | - S Kumar
- Animal Physiology Laboratory, Division of Cattle Physiology and Reproduction, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, India
| | - S Tyagi
- Semen Freezing Laboratory, Division of Cattle Physiology and Reproduction, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, India
| | - A S Sirohi
- Division of Cattle Nutrition and Management, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, India
| | - N Chand
- Semen Freezing Laboratory, Division of Cattle Physiology and Reproduction, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, India
| | - Y K Soni
- Animal Physiology and Reproduction Section, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Uttar Pradesh, India
| | - S Mahajan
- Animal Physiology Laboratory, Division of Cattle Physiology and Reproduction, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, India
| | - S Saha
- Semen Freezing Laboratory, Division of Cattle Physiology and Reproduction, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, India
| | - A Sharma
- Semen Freezing Laboratory, Division of Cattle Physiology and Reproduction, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, India
| | - Sarika
- Semen Freezing Laboratory, Division of Cattle Physiology and Reproduction, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, India
| | - J S Rajoriya
- NDVSU-College of Veterinary Science and Animal Husbandry, Rewa, Huzur, Madhya Pradesh, India
| | - Anjali
- Animal Physiology Laboratory, Division of Cattle Physiology and Reproduction, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, India
| | - A K Mohanty
- ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, India
| |
Collapse
|
7
|
Du Y, Cao C, Liu Y, Zi X, He Y, Shi H, Zhao J, Ge C, Wang K. Polymorphism, Genetic Effect, and Association with Egg-Laying Performance of Chahua Chickens Matrix Metalloproteinases 13 Promoter. Genes (Basel) 2023; 14:1352. [PMID: 37510257 PMCID: PMC10379211 DOI: 10.3390/genes14071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Matrix metalloproteinases are a group of proteases involved in the regulation of ovarian follicular development and ovulation. Among the different MMPs, MMP13 is known to play an important role in reproduction. Therefore, this study aimed to screen the molecular genetic markers of the MMP13 gene that affect the egg-laying performance of Chahua chickens. Polymerase chain reaction (PCR) and sequencing were performed in the 5' regulation region of the MMP13 gene to detect loci significantly related to the egg-laying performance of Chahua chickens. A double fluorescence reporting system, quantitative reverse transcription PCR (RT-qPCR), and Western blotting were used to study whether gene expression was regulated by identified sites, providing a theoretical basis to improve egg production in Chahua chickens. The results revealed six single nucleotide polymorphisms (SNPs; A-1887T, T-1889C, A-1890T, T-2252C, T-2329C, and C-2360A) in the promoter region of the MMP13 gene. Further analysis revealed that hens with T-1890-C-1889-T-1887/T-1890-C-1889-T-1887 (mutant type, MT) had an earlier age at first egg (AFE) than hens with A-1890-T-1889-A-1887/A-1890-T-1889-A-1887 (wild type, WT; p < 0.05). RT-qPCR showed that the relative expression level of the MMP13 gene in the ovarian tissues of individuals with the mutation was higher than that of individuals with the wild gene (p < 0.05). Western blot results confirmed higher levels of the MMP13 protein in MT ovaries compared to those in WT ovaries. Thus, this study suggests that mutation sites on the MMP13 promoter may affect gene expression. In conclusion, the MMP13 gene in Chahua chickens may be significant for egg-laying performance, and the polymorphism in its promoter region could be used as a molecular marker to improve egg-laying performance.
Collapse
Affiliation(s)
- Yanli Du
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, China
| | - Changwei Cao
- Department of Food Science and Engineering, College of Biological Sciences, Southwest Forestry University, Kunming 650201, China
| | - Yong Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| | - Xiannian Zi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| | - Yang He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| | - Hongmei Shi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| | - Jinbo Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| | - Changrong Ge
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| | - Kun Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
8
|
Almeida GHDR, Iglesia RP, Rinaldi JDC, Murai MK, Calomeno CVAQ, da Silva Junior LN, Horvath-Pereira BDO, Pinho LBM, Miglino MA, Carreira ACO. Current Trends on Bioengineering Approaches for Ovarian Microenvironment Reconstruction. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36355603 DOI: 10.1089/ten.teb.2022.0171] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ovarian tissue has a unique microarchitecture and a complex cellular and molecular dynamics that are essential for follicular survival and development. Due to this great complexity, several factors may lead to ovarian insufficiency, and therefore to systemic metabolic disorders and female infertility. Techniques currently used in the reproductive clinic such as oocyte cryopreservation or even ovarian tissue transplant, although effective, have several limitations, which impair their wide application. In this scenario, mimetic ovarian tissue reconstruction comes as an innovative alternative to develop new methodologies for germ cells preservation and ovarian functions restoration. The ovarian extracellular matrix (ECM) is crucial for oocyte viability maintenance, once it acts actively in folliculogenesis. One of the key components of ovarian bioengineering is biomaterials application that mimics ECM and provides conditions for cell anchorage, proliferation, and differentiation. Therefore, this review aims at describing ovarian tissue engineering approaches and listing the main limitations of current methods for preservation and reestablishment of ovarian fertility. In addition, we describe the main elements that structure this study field, highlighting the main advances and the challenges to overcome to develop innovative methodologies to be applied in reproductive medicine. Impact Statement This review presents the main advances in the application of tissue bioengineering in the ovarian tissue reconstruction to develop innovative solutions for ovarian fertility reestablishment.
Collapse
Affiliation(s)
| | - Rebeca Piatniczka Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Mikaelly Kiemy Murai
- Department of Morphological Sciences, State University of Maringa, Maringá, Brazil
| | | | | | | | - Letícia Beatriz Mazo Pinho
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Center of Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
9
|
Yang RQ, Chen YL, Sun LC, Ou W, Liu HY, Zhang LJ, Liu GM, Zhao G, Cao MJ. Involvement of MMP-9 in collagen degradation of sea bass (Lateolabrax japonicus): Cloning, expression, and characterization. J Food Sci 2023; 88:638-649. [PMID: 36576136 DOI: 10.1111/1750-3841.16402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 12/29/2022]
Abstract
Disintegration of intramuscular connective tissue is responsible for postmortem tenderization of fish muscles during chilled storage. Matrix metalloproteinase-9 (MMP-9) was reported to be involved in this process, whereas the mechanism has not been revealed. In the present study, purified type I and V collagens from the connective tissues of sea bass (Lateolabrax japonicus) muscles were first prepared. These two kinds of collagens comprise three polypeptide chains (α), forming a typical triple-helical domain as determined by circular dichroism. The complete coding region of MMP-9 containing an open reading frame of 2070 bp encoding 689 amino acid residues was then cloned. The recombinant MMP-9 catalytic domain (rcMMP-9) was expressed in Escherichia coli and exhibited high hydrolyzing activity toward gelatin. Besides, rcMMP-9 was effective in degrading type V collagen rather than type I collagen at 4°C. The enzymatic activity of rcMMP-9 was highly pH-dependent, and its enzymatic activity under neutral and basic conditions was higher than that under acidic conditions. Metal ion Ca2+ was necessary for the maintenance of rcMMP-9 activity, whereas Zn2+ inhibited its activity. Our present study indicated that MMP-9 is responsible for the disintegration of intramuscular connective tissues by cleaving type V collagen during postmortem tenderization of fish muscle. PRACTICAL APPLICATION: Elucidation the involvement of MMP-9 in collagen degradation will deliver a reference for the prevention of muscular protein decomposition during chilled storage of fish fillets.
Collapse
Affiliation(s)
- Ru-Qing Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.,Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Le-Chang Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.,Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Wei Ou
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Hai-Yan Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.,Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.,Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.,Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
10
|
Wang X, Liu Y, Ding Y, Feng G. CAMSAP2 promotes colorectal cancer cell migration and invasion through activation of JNK/c-Jun/MMP-1 signaling pathway. Sci Rep 2022; 12:16899. [PMID: 36207462 PMCID: PMC9546856 DOI: 10.1038/s41598-022-21345-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
CAMSAP2 has been reported to act as an oncogene in hepatocellular carcinoma. However, the expression CAMSAP2 and its potential roles in colorectal cancer remain unclear. In this study, qRT-PCR and immunoblotting analysis were used to detect the mRNA and protein levels of CAMSAP2 in colorectal cancer tissues and cell lines. Wound-healing, transwell migration and invasion assay were performed to determine whether CAMSAP2 promotes the capabilities of migration and invasion of colorectal cancer cells. The results showed that CAMSAP2 was highly elevated in colorectal cancer tissues and cell lines. Moreover, the high CAMSAP2 expression was positively correlated with tumor invasion depth, lymph node metastasis, distant metastasis, and the poor prognosis of colorectal cancer. Additionally, ectopic expression of CAMSAP2 in colorectal cancer cells promoted the migration and invasion in vitro and enhanced the lung metastasis in nude mice. Conversely, silencing CAMSAP2 resulted in an opposite phenomenon. By gain- and loss-of function experiments, we demonstrated that MMP-1 was a substantial downstream target of CAMSAP2, and it played a crucial role in regulating the migration and invasion induced by CAMSAP2 in colorectal cancer cells. Mechanistically, CAMSAP2 promoted the activation of JNK/c-Jun signaling pathway and subsequently upregulated the transcription activity of MMP-1. Taken together, our findings demonstrated that CAMSAP2 promoted colorectal cancer cell migration, invasion and metastasis through activation of JNK/c-Jun/MMP-1 signaling pathway, indicating CAMSAP2 is a promising therapeutic target for the treatment of metastatic colorectal cancer patients.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Oncology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, 473 Hanzheng Street, Wuhan, 430000, Hubei, China
| | - Yumin Liu
- Department of Obstetrics and Gynecology, Wuhan Hankou Hospital, Wuhan, 430010, Hubei, China
| | - Yawen Ding
- Department of Oncology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, 473 Hanzheng Street, Wuhan, 430000, Hubei, China
| | - Gang Feng
- Department of Oncology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, 473 Hanzheng Street, Wuhan, 430000, Hubei, China.
| |
Collapse
|
11
|
Zhang Q, Xue Y, Fu Y, Bao B, Guo MY. Zinc Deficiency Aggravates Oxidative Stress Leading to Inflammation and Fibrosis in Lung of Mice. Biol Trace Elem Res 2022; 200:4045-4057. [PMID: 34739677 DOI: 10.1007/s12011-021-03011-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022]
Abstract
Zinc (Zn) is an essential trace element for the body. Studies have confirmed that Zn deficiency can cause oxidative stress. The purpose of the present study was designed to investigate the effect of Zn on fibrosis in lung of mice and its mechanism. Mice were fed with different Zn levels dietary, then we found that the Zn-deficient diet induced a decrease of Zn level in lung tissue. The results also revealed the alveolar structure hyperemia and an inflammatory exudated in the alveolar cavity. Moreover, immunohistochemical results showed that the expression of α-smooth muscle actin (α-SMA) increased. And the Sirius red staining indicated an increase in collagen with Zn deficiency. Furthermore, oxygen radicals (ROS) levels were significantly increased, and the antioxidants were significantly decreased. Meanwhile, inflammatory factors (TNF-α and IL-1β) were remarkably increased, and the ELISA results showed that collagen I, III, and IV and fibronectin (FN) were increased. In addition, the expressions of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) were detected by qPCR. The results showed that the expression of TIMPs was increased but the expression of MMPs was decreased. The results of the experiment in vitro were consistent with that in vivo. All the results indicated that Zn deficiency aggravated the oxidative stress response of lung tissue to induce inflammation, leading to fibrosis in lung.
Collapse
Affiliation(s)
- Qirui Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yao Xue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuxin Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Bowen Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
12
|
Sun T, Xiao C, Yang Z, Deng J, Yang X. Grade follicles transcriptional profiling analysis in different laying stages in chicken. BMC Genomics 2022; 23:492. [PMID: 35794517 PMCID: PMC9260967 DOI: 10.1186/s12864-022-08728-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/29/2022] [Indexed: 12/28/2022] Open
Abstract
During follicular development, a series of key events such as follicular recruitment and selection are crucially governed by strict complex regulation. However, its molecular mechanisms remain obscure. To identify the dominant genes controlling chicken follicular development, the small white follicle (SWF), the small yellow follicle (SYF), and the large yellow follicle (LYF) in different laying stages (W22, W31, W51) were collected for RNA sequencing and bioinformatics analysis. There were 1866, 1211, and 1515 differentially expressed genes (DEGs) between SWF and SYF in W22, W31, and W51, respectively. 4021, 2295, and 2902 DEGs were respectively identified between SYF and LYF in W22, W31, and W51. 5618, 4016, and 4809 DEGs were respectively identified between SWF and LYF in W22, W31, and W51. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that extracellular matrix, extracellular region, extracellular region part, ECM-receptor interaction, collagen extracellular matrix, and collagen trimer were significantly enriched (P < 0.05). Protein–protein interaction analysis revealed that COL4A2, COL1A2, COL4A1, COL5A2, COL12A1, ELN, ALB, and MMP10 might be key candidate genes for follicular development in chicken. The current study identified dominant genes and pathways contributing to our understanding of chicken follicular development.
Collapse
Affiliation(s)
- Tiantian Sun
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Cong Xiao
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jixian Deng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
13
|
Hrabia A, Miska KB, Schreier LL, Proszkowiec-Weglarz M. Altered gene expression of selected matrix metalloproteinase system proteins in the broiler chicken gastrointestinal tract during post-hatch development and coccidia infection*. Poult Sci 2022; 101:101915. [PMID: 35687960 PMCID: PMC9190011 DOI: 10.1016/j.psj.2022.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of proteases, that can process extracellular matrix (ECM) components and non-ECM molecules. MMPs can also function intracellularly in proteolytic and nonproteolytic functions. The participation of MMPs in the remodeling of the chicken gastrointestinal tract is largely unknown. The aim of the present study was to examine 1) the early neonatal developmental changes and effect of delayed access to feed immediately post-hatch (PH) and 2) the effect of Eimeria infection on mRNA expression of selected MMPs, their tissue inhibitors (TIMPs), and a disintegrin and metalloproteinase (ADAM) metallopeptidase with thrombospondin type 1 motif 8 (ADAMTS8) in the gastrointestinal tract of chicken. Protein localization of MMPs and TIMPs was also carried out in the normal ileal wall at −48, 24, and 336 h relative to hatch using immunofluorescence. In experiment 1, newly hatched Ross 708 chicks received feed and water immediately PH or were subjected to 48 h delayed access to feed. Chickens were sampled at −48, 0, 4, 24, 48, 72, 96, 144, 192, 240, 288, and 336 h PH. Ileum was collected for investigation of gene expression or fixed in paraformaldehyde for immunofluorescence. In experiments 2 and 3, Ross 708 male broilers were infected, at 21 d of age with Eimeria maxima or E. acervulina or sham-infected with water. Intestinal tissues were collected at 7 and 10 d postinfection for gene expression analysis. In general, mRNA expression patterns of all examined genes showed downregulation during the first 2 wk PH and were not affected by delay in feed access. These development-dependent changes in expression and tissue-dependent localization in the ileum of selected MMPs and TIMPs indicate that these molecules participate in the remodeling of chicken intestinal tissues during PH development. Increased expression of MMP-7 and MMP-9 transcripts in the intestine of Eimeria infected birds suggests an important role for these enzymes in the process of tissue remodeling and destruction in pathological conditions. The findings of this study are important for understanding the relationship between the expression of the MMP system and intestinal development, as well its role in gastrointestinal infection and subsequent recovery.
Collapse
Affiliation(s)
- Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Poland
| | - Katarzyna B Miska
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, MD 20705, USA
| | - Lori L Schreier
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, MD 20705, USA
| | - Monika Proszkowiec-Weglarz
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, MD 20705, USA.
| |
Collapse
|
14
|
Grzesiak M, Kaminska K, Knapczyk-Stwora K, Hrabia A. The expression and localization of selected matrix metalloproteinases (MMP-2, -7 and -9) and their tissue inhibitors (TIMP-2 and -3) in follicular cysts of sows. Theriogenology 2022; 185:109-120. [PMID: 35395587 DOI: 10.1016/j.theriogenology.2022.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of enzymes that degrade extracellular matrix (ECM) molecules, playing a vital role in tissue remodeling under physiological and pathological conditions. Their expression and/or activity are regulated by specific tissue inhibitors of MMPs named TIMPs. Recently, an imbalance in the MMP/TIMP system has been found in human and bovine ovarian cysts, but its role in porcine cyst pathogenesis is unknown. This study examined mRNA expression, protein abundance and localization for selected members of the MMP/TIMP system in follicular cysts of sows. Based on histological analysis, we have assessed follicular (FC) and follicular lutein (FLC) cysts with preovulatory follicles (PF) used as a control. Regarding the pattern of MMP expression, increased MMP2, MMP7 and MMP9 mRNA levels were observed in FLC. Furthermore, both pro- and active forms of MMP-2 and MMP-9 proteins were more abundant in FLC. In FC, the abundance of latent and active forms of MMP-9 and the active form of MMP-2 were greater when compared with PF. In relation to TIMPs, TIMP-2 mRNA and protein expression were increased in FLC, whereas TIMP-3 was up-regulated in both FC and FLC only at the protein level. Using immunofluorescence, MMP-2, MMP-7, TIMP-2 and TIMP-3 were detected in granulosa and theca compartments of FC and within the entire luteinized wall of FLC. Notably, MMP-9 occurred weakly in the granulosa layer of FC, but abundantly in the theca compartment of FC and in the luteinized FLC. Taken together, our findings indicate altered expression of the MMP/TIMP system, suggestive of increased ECM degradation, in sow follicular cysts. These components may be involved in the pathogenesis of porcine ovarian cysts through the ECM remodeling.
Collapse
Affiliation(s)
- Malgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| | - Kinga Kaminska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Katarzyna Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|