1
|
Tarasova K, Arteaga MB, Kidtiwong A, Gueltekin S, Bileck A, Gerner C, Gerner I, Jenner F. Dexamethasone: a double-edged sword in the treatment of osteoarthritis. Sci Rep 2025; 15:11832. [PMID: 40195473 PMCID: PMC11976973 DOI: 10.1038/s41598-025-96050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Glucocorticoids are widely used to manage osteoarthritis (OA) symptoms, but long-term safety concerns exist. This study investigates the therapeutic potential of dexamethasone (DEX) and triamcinolone acetonide (TA) in chondrocytes, evaluating their anti-inflammatory effects and potential detrimental actions. This study evaluated the effects of DEX and TA on the expression of pro-inflammatory genes in inflamed chondrocytes. In addition, the effects of DEX treatment on chondrocytes were analyzed using next-generation sequencing, high-resolution mass spectrometry, proliferation and metabolic rate, wound healing capacity and senescence-associated B-galactosidase assays. A single therapeutic dose of DEX (40nM) effectively reduced the expression of inflammatory genes in chondrocytes, while TA showed no such effect. DEX significantly reduced inflammation but also ECM production in inflamed chondrocytes. At 24 h, DEX treatment led to 168 differentially expressed genes (DEGs) compared to untreated inflamed cells, decreasing to 5 DEGs by 48 h, indicating a rapidly diminishing anti-inflammatory effect. Conversely, the difference between DEX-treated and healthy cells increased over time, from 666 DEGs at 24 h to 1317 DEGs at 48 h. Pathway analysis revealed potential disruptions in cell cycle, mitosis, and ECM homeostasis in DEX-treated cells compared to both healthy and inflamed controls. Interestingly, repeated DEX administration at both a therapeutic (40nM) and a high dose (1µM) induced senescence in healthy cells but not in inflamed cells. In contrast, repeated high-dose DEX reduced apoptosis marker Caspase 3/7 in inflamed but not healthy cells. Despite the transient suppression of inflammation achieved with DEX treatment, the observed decrease in ECM production and induction of senescence in healthy chondrocytes at therapeutic doses, along with apoptosis in inflamed cells at higher doses, underscore the need for caution in its intra-articular administration.
Collapse
Affiliation(s)
- Karyna Tarasova
- VETERM, Equine Surgery Unit, Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Maria Belen Arteaga
- VETERM, Equine Surgery Unit, Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Angkana Kidtiwong
- VETERM, Equine Surgery Unit, Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sinan Gueltekin
- VETERM, Equine Surgery Unit, Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Iris Gerner
- VETERM, Equine Surgery Unit, Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Florien Jenner
- VETERM, Equine Surgery Unit, Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
2
|
Chia ZJ, Kumarapperuma H, Zhang R, Little PJ, Kamato D. Smad transcription factors as mediators of 7 transmembrane G protein-coupled receptor signalling. Acta Pharmacol Sin 2025; 46:795-804. [PMID: 39506064 PMCID: PMC11950520 DOI: 10.1038/s41401-024-01413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
The Smad transcription factors are well known for their role at the core of transforming growth factor-β (TGF-β) signalling. However, recent evidence shows that the Smad transcription factors play a vital role downstream of other classes of receptors including G protein-coupled receptors (GPCR). The versatility of Smad transcription factors originated from the two regions that can be differently activated by the TGF-β receptor superfamily or through the recruitment of intracellular kinases stimulated by other receptors classes such as GPCRs. The classic GPCR signalling cascade is further expanded to conditional adoption of the Smad transcription factor under the stimulation of Akt, demonstrating the unique involvement of the Smad transcription factor in GPCR signalling pathways in disease environments. In this review, we provide a summary of the signalling pathways of the Smad transcription factors as an important downstream mediator of GPCRs, presenting exciting opportunities for discovering new therapeutic targets for diseases.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hirushi Kumarapperuma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ruizhi Zhang
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
3
|
Migliorini F, Pilone M, Ascani J, Schäfer L, Jeyaraman M, Maffulli N. Management of knee osteoarthritis using bone marrow aspirate concentrate: a systematic review. Br Med Bull 2025; 153:ldae016. [PMID: 39506910 DOI: 10.1093/bmb/ldae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/20/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION Knee osteoarthritis (OA) is a common degenerative joint condition and a major cause of disability in the general population. SOURCE OF DATA Recent published literature identified from PubMed, EMBASE, Google Scholar, and Scopus. AREAS OF AGREEMENT Orthobiological therapies try to regenerate articular cartilage and stop the progression of the degenerative lesion. Intra-articular injections of biological derivates have been increasingly used in the last decade. AREAS OF CONTROVERSY The indications for the use of bone marrow aspirate concentrate (BMAC) are still unclear. GROWING POINTS We systematically reviewed the current literature on BMAC in the management of knee OA, giving an update on the current indications for the selection of the ideal patient and the preparations and efficacy of BMAC compared to other biological alternatives. AREAS TIMELY FOR DEVELOPING RESEARCH BMAC is a valuable source of mesenchymal stem cells, offering potential benefits in attenuating the inflammatory pathway associated with knee OA. Intra-articular injection of BMAC has shown effectiveness in clinical trials improving functional outcomes of knee OA patients. The superiority of BMAC over other orthobiological treatments cannot be assessed because of conflicting results.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Via Lorenz Böhler 5, 39100, Bolzano, Italy
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Via del Casale di San Pio V, 00165 Rome, Italy
| | - Marco Pilone
- Residency Program in Orthopedics and Traumatology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Jacopo Ascani
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University "La Sapienza" of Rome, Via di Grottarossa 1035, 00189 Roma, Italy
| | - Luise Schäfer
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Via Lorenz Böhler 5, 39100, Bolzano, Italy
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Poonamallee High Rd, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University "La Sapienza" of Rome, Via di Grottarossa 1035, 00189 Roma, Italy
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent ST4 7QB, United Kingdom
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, E1 4DG London, UK
| |
Collapse
|
4
|
Elashry MI, Speer J, De Marco I, Klymiuk MC, Wenisch S, Arnhold S. Extracellular Vesicles: A Novel Diagnostic Tool and Potential Therapeutic Approach for Equine Osteoarthritis. Curr Issues Mol Biol 2024; 46:13078-13104. [PMID: 39590374 PMCID: PMC11593097 DOI: 10.3390/cimb46110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic progressive degenerative joint disease that affects a significant portion of the equine population and humans worldwide. Current treatment options for equine OA are limited and incompletely curative. Horses provide an excellent large-animal model for studying human OA. Recent advances in the field of regenerative medicine have led to the exploration of extracellular vesicles (EVs)-cargoes of microRNA, proteins, lipids, and nucleic acids-to evaluate their diagnostic value in terms of disease progression and severity, as well as a potential cell-free therapeutic approach for equine OA. EVs transmit molecular signals that influence various biological processes, including the inflammatory response, apoptosis, proliferation, and cell communication. In the present review, we summarize recent advances in the isolation and identification of EVs, the use of their biologically active components as biomarkers, and the distribution of the gap junction protein connexin 43. Moreover, we highlight the role of mesenchymal stem cell-derived EVs as a potential therapeutic tool for equine musculoskeletal disorders. This review aims to provide a comprehensive overview of the current understanding of the pathogenesis, diagnosis, and treatment strategies for OA. In particular, the roles of EVs as biomarkers in synovial fluid, chondrocytes, and plasma for the early detection of equine OA are discussed.
Collapse
Affiliation(s)
- Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Julia Speer
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Isabelle De Marco
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Michele C. Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| |
Collapse
|
5
|
Cione E, Michelini S, Abrego-Guandique DM, Vaia N, Michelini S, Puleo V, Bertelli M, Caroleo MC, Cannataro R. Identification of Specific microRNAs in Adipose Tissue Affected by Lipedema. Curr Issues Mol Biol 2024; 46:11957-11974. [PMID: 39590304 PMCID: PMC11592672 DOI: 10.3390/cimb46110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Lipedema is a chronic disorder affecting women with a 10% incidence worldwide. It is often confused with obesity. This study was undertaken to study microRNAs in lipedema tissue assessed by direct hybridization using the robust n-counter flex DX CE-IVD platform. The mean age of the subjects participating in the study was 40.29 (±12.17). The mean body weight and BMI were 67.37 (±10.02) and 25.75 (±4.10), respectively. The lipedema stages included were I and II. The differential expressed human (hsa)-miRNAs were determined according to a log2 fold-change (LFC) of 0.5 and p value < 0.05. To these, increased expression of hsa-let-7g-5p was evident, as well as reduced levels of hsa-miR-371a-5p, -4454+7975, -365a+b-3p, -205-5p, -196a-5p, -4488, -2116-5p, -141-3p, -208a-3p, -302b-3p, 374a-5p, and -1297. Then, several bioinformatics tools were used to analyze microarray data focusing on validated target genes in silico. KEGG and Gene Ontology (GO) pathway enrichment analysis was conducted. Furthermore, the protein-protein interaction and co-expression network were analyzed using STRING and Cytoscape, respectively. The most upregulated miRNA mainly affected genes related to cell cycle, oocyte meiosis, and inflammatory bowel disease. The downregulated microRNAs were related to endocrine resistance, insulin resistance, hypersensitivity to AGE-RAGEs, and focal adhesion. Finally, we validated by RT-PCR the upregulated hsa-let-7g-5p and two down-regulated ones, hsa-miR-205-5p and hsa-miR-302b-3p, confirming microarray results. In addition, three mRNA target miRNAs were monitored, SMAD2, the target of the hsa-let-7g-5p, and ESR1 and VEGFA, the target of hsa-miR-205-5p and hsa-miR-302b-3p, respectively. Our results open a new direction for comprehending biochemical mechanisms related with the pathogenesis of lipedema, shedding light on this intricate pathophysiological condition that could bring to light possible biomarkers in the future.
Collapse
Affiliation(s)
- Erika Cione
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Sandro Michelini
- Servizio di Diagnostica e Riabilitazione Vascolare Ospedale di Marino, 00047 Rome, Italy;
| | | | - Nicola Vaia
- Chirurgia Plastica, Ricostruttiva ed Estetica, European Hospital, 00149 Rome, Italy;
| | - Serena Michelini
- Medicina Fisica e Riabilitazione, Università La Sapienza, Ospedale S. Andrea, 00185 Rome, Italy;
| | - Valeria Puleo
- Dipartimento di Scienze e Sanità Pubblica, Università Cattolica Policlinico Gemelli, 00168 Rome, Italy;
| | | | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy; (D.M.A.-G.); (M.C.C.)
| | - Roberto Cannataro
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Research Division, Dynamical Business and Science Society—DBSS International SAS, Bogotá 110311, Colombia
| |
Collapse
|
6
|
van den Bosch MHJ, Blom AB, van der Kraan PM. Inflammation in osteoarthritis: Our view on its presence and involvement in disease development over the years. Osteoarthritis Cartilage 2024; 32:355-364. [PMID: 38142733 DOI: 10.1016/j.joca.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Inflammation, both locally in the joint and systemic, is nowadays considered among the mechanisms involved in osteoarthritis (OA). However, this concept has not always been generally accepted. In fact, for long OA has been described as a relatively simple degeneration of articular cartilage as the result of wear and tear only. In this narrative review, we present what our understanding of OA was at the time of the inaugural release of Osteoarthritis and Cartilage about 30 years ago and discuss a set of pivotal papers that changed our view on the role of inflammation in OA development. Furthermore, we briefly discuss the current view on the involvement of inflammation in OA. Next, we use the example of transforming growth factor-β signaling to show how inflammation might influence processes in the joint in a manner that is beyond the simple interaction of ligand and receptor leading to the release of inflammatory and catabolic mediators. Finally, we discuss our view on what should be done in the future to bring the field forward.
Collapse
Affiliation(s)
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Thielen NGM, van Caam APM, V Beuningen HM, Vitters EL, van den Bosch MHJ, Koenders MI, van de Loo FAJ, Blaney Davidson EN, van der Kraan PM. Separating friend from foe: Inhibition of TGF-β-induced detrimental SMAD1/5/9 phosphorylation while maintaining protective SMAD2/3 signaling in OA chondrocytes. Osteoarthritis Cartilage 2023; 31:1481-1490. [PMID: 37652257 DOI: 10.1016/j.joca.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE Transforming growth factor-β (TGF-β) signaling via SMAD2/3 is crucial to control cartilage homeostasis. However, TGF-β can also have detrimental effects by signaling via SMAD1/5/9 and thereby contribute to diseases like osteoarthritis (OA). In this study, we aimed to block TGF-β-induced SMAD1/5/9 signaling in primary human OA chondrocytes, while maintaining functional SMAD2/3 signaling. DESIGN Human OA chondrocytes were pre-incubated with different concentrations of ALK4/5/7 kinase inhibitor SB-505124 before stimulation with TGF-β. Changes in SMAD C-terminal phosphorylation were analyzed using Western blot and response genes were measured with quantitative Polymerase Chain Reaction. To further explore the consequences of our ability to separate pathways, we investigated TGF-β-induced chondrocyte hypertrophy. RESULTS Pre-incubation with 0.5 µM SB-505124, maintained ±50% of C-terminal SMAD2/3 phosphorylation and induction of JUNB and SERPINE1, but blocked SMAD1/5/9-C phosphorylation and expression of ID1 and ID3. Furthermore, TGF-β, in levels comparable to those in the synovial fluid of OA patients, resulted in regulation of hypertrophic and dedifferentiation markers in OA chondrocytes; i.e. an increase in COL10, RUNX2, COL1A1, and VEGF and a decrease in ACAN expression. Interestingly, in a subgroup of OA chondrocyte donors, blocking only SMAD1/5/9 caused stronger inhibition on TGF-β-induced RUNX2 than blocking both SMAD pathways. CONCLUSION Our findings indicate that using low dose of SB-505124 we maintained functional SMAD2/3 signaling that blocks RUNX2 expression in a subgroup of OA patients. We are the first to show that SMAD2/3 and SMAD1/5/9 pathways can be separately modulated using low and high doses of SB-505124 and thereby split TGF-β's detrimental from protective function in chondrocytes.
Collapse
Affiliation(s)
- Nathalie G M Thielen
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arjan P M van Caam
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henk M V Beuningen
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elly L Vitters
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn H J van den Bosch
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marije I Koenders
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fons A J van de Loo
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esmeralda N Blaney Davidson
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter M van der Kraan
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Yang Q, Zhao Y, Li N, Wu JL, Huang X, Zhang M, Bian X, Zhu YZ. Identification of polyunsaturated fatty acids as potential biomarkers of osteoarthritis after sodium hyaluronate and mesenchymal stem cell treatment through metabolomics. Front Pharmacol 2023; 14:1224239. [PMID: 37649888 PMCID: PMC10462907 DOI: 10.3389/fphar.2023.1224239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Osteoarthritis (OA) is a prevalent joint disorder worldwide. Sodium hyaluronate (SH) and mesenchymal stem cells (MSCs) are promising therapeutic strategies for OA. Previous studies showed they could improve knee function and clinical symptoms of OA. However, the mechanism of the therapeutic effects on the improvement of OA has not been clearly explained. Methods: In our study, we used a technique called 5-(diisopropylamino)amylamine derivatization liquid chromatography coupled with mass spectrometry to find the metabolites in OA synovial fluid under different treatments. Results and Discussion: After looking into the metabolomics, we discovered that SH and MSC treatment led to the downregulation of ω-6 polyunsaturated fatty acids (PUFAs) and the upregulation of ω-3 PUFAs. Significantly, the contents of 5(S)-HETE, PGA2, PGB2, and PGJ2 were lower in the MSC group than in the SH group after quantification using 5-(diisopropylamino)amylamine derivatization-UHPLC-QQQ-MS. This is the first report on the relationship of 11(S)-HETE, PGA2, PGB2, PGF2β, 11β-PGF2α, and DK-PGE2 with OA. Moreover, the correlation analysis of metabolites and inflammation factors showed the positive association of ω-6 PUFAs with pro-inflammation cytokines, and of ω-3 PUFAs with anti-inflammation cytokines. Our results indicated the therapeutic effect of SH and MSCs in patients with OA. In addition, this reliable metabolic approach could uncover novel biomarkers to treat OA.
Collapse
Affiliation(s)
- Qinyan Yang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Liver Transplant Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiran Zhao
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Xiaolun Huang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Liver Transplant Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Zhang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Xiqing Bian
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yi-Zhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
9
|
Stassen RHMJ, van den Akker GGH, Surtel DAM, Housmans BAC, Cremers A, Caron MMJ, Smagul A, Peffers MJ, van Rhijn LW, Welting TJM. Unravelling the Basic Calcium Phosphate crystal-dependent chondrocyte protein secretome; a role for TGF-β signaling. Osteoarthritis Cartilage 2023; 31:1035-1046. [PMID: 37075856 DOI: 10.1016/j.joca.2023.02.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE Basic Calcium Phosphate (BCP) crystals play an active role in the progression of osteoarthritis (OA). However, the cellular consequences remain largely unknown. Therefore, we characterized for the first time the changes in the protein secretome of human OA articular chondrocytes as a result of BCP stimulation using two unbiased proteomic analysis methods. METHOD Isolated human OA articular chondrocytes were stimulated with BCP crystals and examined by Quantitative Reverse Transcription PCR (RT-qPCR) and enzyme-linked immune sorbent assay (ELISA) after twenty-four and forty-eight hours. Forty-eight hours conditioned media were analyzed by label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) and an antibody array. The activity of BCP dependent Transforming Growth Factor Beta (TGF-β) signaling was analyzed by RT-qPCR and luciferase reporter assays. The molecular consequences regarding BCP-dependent TGF-β signaling on BCP-dependent Interleukin 6 (IL-6) were investigated using specific pathway inhibitors. RESULTS Synthesized BCP crystals induced IL-6 expression and secretion upon stimulation of human articular chondrocytes. Concomitant induction of catabolic gene expression was observed. Analysis of conditioned media revealed a complex and diverse response with a large number of proteins involved in TGF-β signaling, both in activation of latent TGF-β and TGF-β superfamily members, which were increased compared to non-stimulated OA chondrocytes. Activity of this BCP driven TGF-β signaling was confirmed by increased activity of expression of TGF-β target genes and luciferase reporters. Inhibition of BCP driven TGF-β signaling resulted in decreased IL-6 expression and secretion with a moderate effect on catabolic gene expression. CONCLUSION BCP crystal stimulation resulted in a complex and diverse chondrocyte protein secretome response. An important role for BCP-dependent TGF-β signaling was identified in development of a pro-inflammatory environment.
Collapse
Affiliation(s)
- R H M J Stassen
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - G G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - D A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - B A C Housmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - A Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - M M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - A Smagul
- Department of Musculoskeletal Biology, Life Course and Medical Sciences, University of Liverpool, UK
| | - M J Peffers
- Department of Musculoskeletal Biology, Life Course and Medical Sciences, University of Liverpool, UK
| | - L W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center +, Maastricht, The Netherlands
| | - T J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands; Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center +, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Kuppa SS, Kim HK, Kang JY, Lee SC, Yang HY, Sankaranarayanan J, Seon JK. Polynucleotides Suppress Inflammation and Stimulate Matrix Synthesis in an In Vitro Cell-Based Osteoarthritis Model. Int J Mol Sci 2023; 24:12282. [PMID: 37569659 PMCID: PMC10418450 DOI: 10.3390/ijms241512282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Osteoarthritis (OA) is characterized by degeneration of the joint cartilage, inflammation, and a change in the chondrocyte phenotype. Inflammation also promotes cell hypertrophy in human articular chondrocytes (HC-a) by activating the NF-κB pathway. Chondrocyte hypertrophy and inflammation promote extracellular matrix degradation (ECM). Chondrocytes depend on Smad signaling to control and regulate cell hypertrophy as well as to maintain the ECM. The involvement of these two pathways is crucial for preserving the homeostasis of articular cartilage. In recent years, Polynucleotides Highly Purified Technology (PN-HPT) has emerged as a promising area of research for the treatment of OA. PN-HPT involves the use of polynucleotide-based agents with controlled natural origins and high purification levels. In this study, we focused on evaluating the efficacy of a specific polynucleotide sodium agent, known as CONJURAN, which is derived from fish sperm. Polynucleotides (PN), which are physiologically present in the matrix and function as water-soluble nucleic acids with a gel-like property, have been used to treat patients with OA. However, the specific mechanisms underlying the effect remain unclear. Therefore, we investigated the effect of PN in an OA cell model in which HC-a cells were stimulated with interleukin-1β (IL-1β) with or without PN treatment. The CCK-8 assay was used to assess the cytotoxic effects of PN. Furthermore, the enzyme-linked immunosorbent assay was utilized to detect MMP13 levels, and the nitric oxide assay was utilized to determine the effect of PN on inflammation. The anti-inflammatory effects of PN and related mechanisms were investigated using quantitative PCR, Western blot analysis, and immunofluorescence to examine and analyze relative markers. PN inhibited IL-1β induced destruction of genes and proteins by downregulating the expression of MMP3, MMP13, iNOS, and COX-2 while increasing the expression of aggrecan (ACAN) and collagen II (COL2A1). This study demonstrates, for the first time, that PN exerted anti-inflammatory effects by partially inhibiting the NF-κB pathway and increasing the Smad2/3 pathway. Based on our findings, PN can potentially serve as a treatment for OA.
Collapse
Affiliation(s)
- Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Hyung-Keun Kim
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Ju-Yeon Kang
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Seok-Cheol Lee
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Hong-Yeol Yang
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Jaishree Sankaranarayanan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Jong-Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| |
Collapse
|
11
|
Veronesi F, Costa V, Bellavia D, Basoli V, Giavaresi G. Epigenetic Modifications of MiRNAs in Osteoarthritis: A Systematic Review on Their Methylation Levels and Effects on Chondrocytes, Extracellular Matrix and Joint Inflammation. Cells 2023; 12:1821. [PMID: 37508486 PMCID: PMC10377913 DOI: 10.3390/cells12141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a joint disorder characterized by progressive degeneration of cartilage extracellular matrix (ECM), chondrocyte hypertrophy and apoptosis and inflammation. The current treatments mainly concern pain control and reduction of inflammation, but no therapeutic strategy has been identified as a disease-modifying treatment. Therefore, identifying specific biomarkers useful to prevent, treat or distinguish the stages of OA disease has become an immediate need of clinical practice. The role of microRNAs (miRNAs) in OA has been investigated in the last decade, and increasing evidence has emerged that the influence of the environment on gene expression through epigenetic processes contributes to the development, progression and aggressiveness of OA, in particular acting on the microenvironment modulations. The effects of epigenetic regulation, particularly different miRNA methylation during OA disease, were highlighted in the present systematic review. The evidence arising from this study of the literature conducted in three databases (PubMed, Scopus, Web of Science) suggested that miRNA methylation state already strongly impacts OA progression, driving chondrocytes and synoviocyte proliferation, apoptosis, inflammation and ECM deposition. However, the possibility of understanding the mechanism by which different epigenetic modifications of miRNA or pre-miRNA sequences drive the aggressiveness of OA could be the new focus of future investigations.
Collapse
Affiliation(s)
- Francesca Veronesi
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
| | - Viviana Costa
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
| | - Daniele Bellavia
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
| | - Valentina Basoli
- Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (SwissMAM), University of Basel, 4123 Allschwil, Switzerland
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Gianluca Giavaresi
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
12
|
Wang Y, Jin Z, Jia S, Shen P, Yang Y, Huang Y. Mechanical stress protects against chondrocyte pyroptosis through TGF-β1-mediated activation of Smad2/3 and inhibition of the NF-κB signaling pathway in an osteoarthritis model. Biomed Pharmacother 2023; 159:114216. [PMID: 36634591 DOI: 10.1016/j.biopha.2023.114216] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that is difficult to cure owing to its complicated pathogenesis. Exercise therapy has been endorsed as a primary treatment option. However, it remains controversial how exercise intensity regulates OA progression. Here, a declining propensity for TGF-β1 was predicted via bioinformatics analysis of microarray GSE57218 and validated in cartilage samples obtained from arthroplasty. Based on this, cyclic tensile strain or TGF-β1 intervention was performed on human OA chondrocytes, and we found that moderate-intensity mechanical loads protected chondrocytes against pyroptosis. During this process, the elevation of TGF-β1 is mechanically stimuli-dependent and exerts an inhibitory effect on chondrocyte pyroptosis. Moreover, we elucidated that TGF-β1 activated Smad2/3 and inhibited the NF-κB signaling pathway to suppress chondrocyte pyroptosis. Furthermore, we established a rat knee OA model by intra-articular injection of monosodium iodoacetate and performed treadmill exercises of different intensities. Similar to the in vitro results, we demonstrated that moderate-intensity treadmill exercise had an outstanding chondroprotective effect. An inappropriate intensity of mechanical stimulation may aggravate OA both in vivo and in vitro. Overall, our findings demonstrated that activation of the TGF-β1/Smad2/Smad3 axis and inhibition of NF-κB coordinately inhibit chondrocyte pyroptosis under mechanical loads. This study sheds light on the future development of safe and effective exercise therapies for OA.
Collapse
Affiliation(s)
- Yang Wang
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhuangzhuang Jin
- Department of Emergency Medicine, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Shuangshuo Jia
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Peng Shen
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China.
| | - Ying Huang
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
13
|
Fine N, Lively S, Séguin CA, Perruccio AV, Kapoor M, Rampersaud R. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol 2023; 19:136-152. [PMID: 36702892 DOI: 10.1038/s41584-022-00888-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/27/2023]
Abstract
Intervertebral disc degeneration (IDD) and osteoarthritis (OA) affecting the facet joint of the spine are biomechanically interdependent, typically occur in tandem, and have considerable epidemiological and pathophysiological overlap. Historically, the distinctions between these degenerative diseases have been emphasized. Therefore, research in the two fields often occurs independently without adequate consideration of the co-dependence of the two sites, which reside within the same functional spinal unit. Emerging evidence from animal models of spine degeneration highlight the interdependence of IDD and facet joint OA, warranting a review of the parallels between these two degenerative phenomena for the benefit of both clinicians and research scientists. This Review discusses the pathophysiological aspects of IDD and OA, with an emphasis on tissue, cellular and molecular pathways of degeneration. Although the intervertebral disc and synovial facet joint are biologically distinct structures that are amenable to reductive scientific consideration, substantial overlap exists between the molecular pathways and processes of degeneration (including cartilage destruction, extracellular matrix degeneration and osteophyte formation) that occur at these sites. Thus, researchers, clinicians, advocates and policy-makers should consider viewing the burden and management of spinal degeneration holistically as part of the OA disease continuum.
Collapse
Affiliation(s)
- Noah Fine
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Cheryle Ann Séguin
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, University of Western Ontario London, London, Ontario, Canada
| | - Anthony V Perruccio
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Xiang W, Wang C, Zhu Z, Wang D, Qiu Z, Wang W. Inhibition of SMAD3 effectively reduces ADAMTS-5 expression in the early stages of osteoarthritis. BMC Musculoskelet Disord 2023; 24:130. [PMID: 36803799 PMCID: PMC9936734 DOI: 10.1186/s12891-022-05949-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/04/2022] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVE As one of the most important protein-degrading enzymes, ADAMTS-5 plays an important role in the regulation of cartilage homeostasis, while miRNA-140 is specifically expressed in cartilage, which can inhibit the expression of ADAMTS-5 and delay the progression of OA (osteoarthritis). SMAD3 is a key protein in the TGF-β signaling pathway, inhibiting the expression of miRNA-140 at the transcriptional and post-transcriptional levels, and studies have confirmed the high expression of SMAD3 in knee cartilage degeneration, but whether SMAD3 can mediate the expression of miRNA-140 to regulate ADAMTS-5 remains unknown. METHODS Sprague-Dawley (SD) rat chondrocytes were extracted in vitro and treated with a SMAD3 inhibitor (SIS3) and miRNA-140 mimics after IL-1 induction. The expression of ADAMTS-5 was detected at the protein and gene levels at 24 h, 48 h, and 72 h after treatment. The OA model of SD rats was created using the traditional Hulth method in vivo, with SIS3 and lentivirus packaged miRNA-140 mimics injected intra-articularly at 2 weeks, 6 weeks and 12 weeks after surgery. The expression of miRNA-140 and ADAMTS-5 in the knee cartilage tissue was observed at the protein and gene levels. Concurrently, knee joint specimens were fixed, decalcified, and embedded in paraffin prior to immunohistochemical, Safranin O/Fast Green staining, and HE staining analyses for ADAMTS-5 and SMAD3. RESULTS In vitro, the expression of ADAMTS-5 protein and mRNA in the SIS3 group decreased to different degrees at each time point. Meanwhile, the expression of miRNA-140 in the SIS3 group was significantly increased, and the expression of ADAMTS-5 in the miRNA-140 mimics group was also significantly downregulated (P < 0.05). In vivo, it was found that ADAMTS-5 protein and gene were downregulated to varying degrees in the SIS3 and miRNA-140 mimic groups at three time points, with the most significant decrease at the early stage (2 weeks) (P < 0.05), and the expression of miRNA-140 in the SIS3 group was significantly upregulated, similar to the changes detected in vitro. Immunohistochemical results showed that the expression of ADAMTS-5 protein in the SIS3 and miRNA-140 groups was significantly downregulated compared to that in the blank group. The results of hematoxylin and eosin staining showed that in the early stage, there was no obvious change in cartilage structure in the SIS3 and miRNA-140 mock groups. The same was observed in the results of Safranin O/Fast Green staining; the number of chondrocytes was not significantly reduced, and the tide line was complete. CONCLUSION The results of in vitro and in vivo experiments preliminarily showed that the inhibition of SMAD3 significantly reduced the expression of ADAMTS-5 in early OA cartilage, and this regulation might be accomplished indirectly through miRNA-140.
Collapse
Affiliation(s)
- Wei Xiang
- Renmin Hospital of Zhijiang, Yichang, Hubei, China
| | - Chao Wang
- Department of Orthopedics Center, The First Affiliated Hospital, Shihezi University School of Medicine, 107 North Second Road, Shihezi, Xinjiang, 832000, People's Republic of China.,Shihezi University School of Medicine, Xinjiang, China
| | - Zhoujun Zhu
- Department of Joint Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Dui Wang
- Shihezi University School of Medicine, Xinjiang, China
| | - Zhenyu Qiu
- Shihezi University School of Medicine, Xinjiang, China
| | - Weishan Wang
- Department of Orthopedics Center, The First Affiliated Hospital, Shihezi University School of Medicine, 107 North Second Road, Shihezi, Xinjiang, 832000, People's Republic of China. .,Shihezi University School of Medicine, Xinjiang, China.
| |
Collapse
|
15
|
Fu X, He S, Wang L, Xue Y, Qiao S, An J, Xia T. Madecassic Acid Ameliorates the Progression of Osteoarthritis: An in vitro and in vivo Study. Drug Des Devel Ther 2022; 16:3793-3804. [PMID: 36345305 PMCID: PMC9636860 DOI: 10.2147/dddt.s383632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Osteoarthritis (OA) places a significant burden on society and finance, and there is presently no effective treatment besides late replacement surgery and symptomatic relief. The therapy of OA requires additional research. Madecassic acid (MA) is the first native triterpenoid compound extracted from Centella asiatica, which has a variety of anti-inflammatory effects. However, the role of MA in OA therapy has not been reported. This study aimed to explore whether MA could suppress the inflammatory response, preserve and restore chondrocyte functions, and ameliorate the progression of OA in vitro and in vivo. METHODS Rat primary chondrocytes were treated with IL-1β to simulate inflammatory environmental conditions and OA in vitro. We examined the effects of MA at concentrations ranging from 0 to 200 µM on the viability of rat chondrocytes and selected 10 µM for further study. Using qRT-PCR, immunofluorescent, immunocytochemistry, and Western blotting techniques, we identified the potential molecular mechanisms and signaling pathways that are responsible for these effects. We established an OA rat model by anterior cruciate ligament transection (ACLT). The animals were then periodically injected with MA into the knee articular cavity. RESULTS We found that MA could down-regulate the IL-1β-induced up-regulation of COX-2, iNOS and IL-6 and restore the cytoskeletal integrity of chondrocytes treated with IL-1β. Moreover, MA protects chondrocytes from IL-1β-induced ECM degradation by upregulating ECM synthesis related protein expression, including collagen-II and ACAN, and further down-regulating ECM catabolic related protein expression, including MMP-3 and MMP-13. Furthermore, we found that NF-κB/IκBα and PI3K/AKT signaling pathways were involved in the regulatory effects of MA on the inflammation inhibition and promotion of ECM anabolism on IL-1β-induced chondrocytes. CONCLUSION These findings suggest that MA appears to be a potentially small molecular drug for rat OA.
Collapse
Affiliation(s)
- Xuejie Fu
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Suzhou, JiangSu, People’s Republic of China
| | - Shuangjian He
- Department of Orthopedics, Suzhou Science & Technology Town Hospital, Suzhou, JiangSu, People’s Republic of China
| | - Liang Wang
- Department of Orthopedics, Suzhou Science & Technology Town Hospital, Suzhou, JiangSu, People’s Republic of China
| | - Yangyang Xue
- Department of Orthopedics, Suzhou Science & Technology Town Hospital, Suzhou, JiangSu, People’s Republic of China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Suzhou, JiangSu, People’s Republic of China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Suzhou, JiangSu, People’s Republic of China
| | - Tingting Xia
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Suzhou, JiangSu, People’s Republic of China,Correspondence: Tingting Xia, Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Suzhou, 215153, JiangSu, People’s Republic of China, Tel +86 18523986726, Email
| |
Collapse
|
16
|
van der Kraan PM. Inhibition of transforming growth factor-β in osteoarthritis. Discrepancy with reduced TGFβ signaling in normal joints. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100238. [PMID: 36474474 PMCID: PMC9718219 DOI: 10.1016/j.ocarto.2022.100238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022] Open
Abstract
Objective Transforming growth factor-β (TGFβ) is a pleiotropic cytokine that is central in the regulation of joint health and disease. Inhibition of TGFβ activity/signaling in experimental osteoarthritis (OA) has been performed to modulate OA severity and progression. In this narrative review we discuss the potential reasons for the variable results of TGFβ inhibition in these models. Design A literature study was performed using the search terms; experimental osteoarthritis and TGFβ. Papers were selected that describe the effect TGFβ activity/signaling inhibition on experimental OA. Based on the selected papers a narrative review has been written about the potential therapeutic role of TGFβ inhibition in OA and potential causes for its variable effects are discussed. Results Inhibition of TGFβ activity in experimental models of OA does not result in either straightforward protection or deleterious effects. More than half of the studies (13/19), but not all, report that inhibition of TGFβ in experimental OA reduces OA severity. This is in contrast with the protective role of TGFβ in healthy joints. Conclusions The effect of TGFβ inhibition on joint damage in experimental OA is variable. Most likely this is a consequence of the changing function of TGFβ in normal and OA joints. As a result, the overall outcome of TGFβ modulation in OA will be unpredictable. To develop OA therapies based on modulation of TGFβ activity specific protective and damaging signaling routes should be identified and tools developed to block the damaging ones.
Collapse
|