1
|
Alves SDM, Lisboa-Filho PN, Zilli Vieira CL, Piacenti-Silva M. Alzheimer's disease and gut-brain axis: Drosophila melanogaster as a model. Front Neurosci 2025; 19:1543826. [PMID: 39967802 PMCID: PMC11832644 DOI: 10.3389/fnins.2025.1543826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Research indicates that by 2050, more than 150 million people will be living with Alzheimer's disease (AD), a condition associated with neurodegeneration due to the accumulation of amyloid-beta and tau proteins. In addition to genetic background, endocrine disruption, and cellular senescence, management of the gut microbiota has emerged as a key element in the diagnosis, progression, and treatment of AD, as certain bacterial metabolites can travel through the bloodstream and cross the blood-brain barrier. This mini-review explores the relationship between tau protein accumulation and gut dysbiosis in Drosophila melanogaster. This model facilitates the investigation of how gut-derived metabolites contribute to neurocognitive impairment and dementia. Understanding the role of direct and indirect bacterial by-products, such as lactate and acetate, in glial cell activation and tau protein dynamics may provide insights into the mechanisms of AD progression and contribute to more effective treatments. Here we discuss how the simplicity and extensive genetic tools of Drosophila make it a valuable model for studying these interactions and testing potential therapeutics, including probiotics. Integrating Drosophila studies with other established models may reveal conserved pathways and accelerate the translation of findings into clinical applications.
Collapse
Affiliation(s)
- Samuel de Mattos Alves
- Institute of Biosciences of Botucatu, Campus Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | | | - Marina Piacenti-Silva
- School of Sciences, Campus Bauru, São Paulo State University (UNESP), Bauru, SP, Brazil
| |
Collapse
|
2
|
Zhang Y, Li Y, Ren T, Duan JA, Xiao P. Promising tools into oxidative stress: A review of non-rodent model organisms. Redox Biol 2024; 77:103402. [PMID: 39437623 PMCID: PMC11532775 DOI: 10.1016/j.redox.2024.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Oxidative stress is a crucial concept in redox biology, and significant progress has been made in recent years. Excessive levels of reactive oxygen species (ROS) can lead to oxidative damage, heightening vulnerability to various diseases. By contrast, ROS maintained within a moderate range plays a role in regulating normal physiological metabolism. Choosing suitable animal models in a complex research context is critical for enhancing research efficacy. While rodents are frequently utilized in medical experiments, they pose challenges such as high costs and ethical considerations. Alternatively, non-rodent model organisms like zebrafish, Drosophila, and C. elegans offer promising avenues into oxidative stress research. These organisms boast advantages such as their small size, high reproduction rate, availability for live imaging, and ease of gene manipulation. This review highlights advancements in the detection of oxidative stress using non-rodent models. The oxidative homeostasis regulatory pathway, Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), is systematically reviewed alongside multiple regulation of Nrf2-centered pathways in different organisms. Ultimately, this review conducts a comprehensive comparative analysis of different model organisms and further explores the combination of novel techniques with non-rodents. This review aims to summarize state-of-the-art findings in oxidative stress research using non-rodents and to delineate future directions.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Amini J, Sanchooli N, Milajerdi MH, Baeeri M, Haddadi M, Sanadgol N. The interplay between tauopathy and aging through interruption of UPR/Nrf2/autophagy crosstalk in the Alzheimer's disease transgenic experimental models. Int J Neurosci 2024; 134:1049-1067. [PMID: 37132251 DOI: 10.1080/00207454.2023.2210409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/14/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Alzheimer's disease (AD) is the most common form of tauopathy that usually occursduring aging and unfolded protein response (UPR), oxidative stress and autophagy play a crucialrole in tauopathy-induced neurotoxicity. The aim of this study was to investigate the effects oftauopathy on normal brain aging in a Drosophila model of AD. METHOD We investigated the interplay between aging (10, 20, 30, and 40 days) and human tauR406W (htau)-induced cell stress in transgenic fruit flies. RESULTS Tauopathy caused significant defects in eye morphology, a decrease in motor function and olfactory memory performance (after 20 days), and an increase in ethanol sensitivity (after 30 days). Our results showed a significant increase in UPR (GRP78 and ATF4), redox signalling (p-Nrf2, total GSH, total SH, lipid peroxidation, and antioxidant activity), and regulatory associated protein of mTOR complex 1 (p-Raptor) activity in the control group after 40 days, while the tauopathy model flies showed an advanced increase in the above markers at 20 days of age. Interestingly, only the control flies showed reduced autophagy by a significant decrease in the autophagosome formation protein (dATG1)/p-Raptor ratio at 40 days of age. Our results were also confirmed by bioinformatic analysis of microarray data from tauPS19 transgenic mice (3, 6, 9, and 12 months), in which tauopathy increased expression of heme oxygenase 1, and glutamate-cysteine ligase catalytic subunit and promote aging in transgenic animals. CONCLUSIONS Overall, we suggest that the neuropathological effects of tau aggregates may be accelerated brain aging, where redox signaling and autophagy efficacy play an important role.
Collapse
Affiliation(s)
- Javad Amini
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Naser Sanchooli
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | | | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
4
|
Giong HK, Hyeon SJ, Lee JG, Cho HJ, Park U, Stein TD, Lee J, Yu K, Ryu H, Lee JS. Tau accumulation is cleared by the induced expression of VCP via autophagy. Acta Neuropathol 2024; 148:46. [PMID: 39316141 PMCID: PMC11422276 DOI: 10.1007/s00401-024-02804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Tauopathy, including frontotemporal lobar dementia and Alzheimer's disease, describes a class of neurodegenerative diseases characterized by the aberrant accumulation of Tau protein due to defects in proteostasis. Upon generating and characterizing a stable transgenic zebrafish that expresses the human TAUP301L mutant in a neuron-specific manner, we found that accumulating Tau protein was efficiently cleared via an enhanced autophagy activity despite constant Tau mRNA expression; apparent tauopathy-like phenotypes were revealed only when the autophagy was genetically or chemically inhibited. We performed RNA-seq analysis, genetic knockdown, and rescue experiments with clinically relevant point mutations of valosin-containing protein (VCP), and showed that induced expression of VCP, an essential cytosolic chaperone for the protein quality system, was a key factor for Tau degradation via its facilitation of the autophagy flux. This novel function of VCP in Tau clearance was further confirmed in a tauopathy mouse model where VCP overexpression significantly decreased the level of phosphorylated and oligomeric/aggregate Tau and rescued Tau-induced cognitive behavioral phenotypes, which were reversed when the autophagy was blocked. Importantly, VCP expression in the brains of human Alzheimer's disease patients was severely downregulated, consistent with its proposed role in Tau clearance. Taken together, these results suggest that enhancing the expression and activity of VCP in a spatiotemporal manner to facilitate the autophagy pathway is a potential therapeutic approach for treating tauopathy.
Collapse
Affiliation(s)
- Hoi-Khoanh Giong
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Seung Jae Hyeon
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Geun Lee
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyun-Ju Cho
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Uiyeol Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Thor D Stein
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Kweon Yu
- Disease Target Structure Research Centre, KRIBB, Daejeon, 34141, Republic of Korea
- KRIBB School, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hoon Ryu
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jeong-Soo Lee
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- KRIBB School, University of Science and Technology, Daejeon, 34113, Republic of Korea.
- Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Zerva MC, Triantafylloudis C, Paspaliaris V, Skoulakis EMC, Papanikolopoulou K. Choline Metabolites Reverse Differentially the Habituation Deficit and Elevated Memory of Tau Null Drosophila. Cells 2024; 13:746. [PMID: 38727282 PMCID: PMC11083674 DOI: 10.3390/cells13090746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Impaired neuronal plasticity and cognitive decline are cardinal features of Alzheimer's disease and related Tauopathies. Aberrantly modified Tau protein and neurotransmitter imbalance, predominantly involving acetylcholine, have been linked to these symptoms. In Drosophila, we have shown that dTau loss specifically enhances associative long-term olfactory memory, impairs foot shock habituation, and deregulates proteins involved in the regulation of neurotransmitter levels, particularly acetylcholine. Interestingly, upon choline treatment, the habituation and memory performance of mutants are restored to that of control flies. Based on these surprising results, we decided to use our well-established genetic model to understand how habituation deficits and memory performance correlate with different aspects of choline physiology as an essential component of the neurotransmitter acetylcholine, the lipid phosphatidylcholine, and the osmoregulator betaine. The results revealed that the two observed phenotypes are reversed by different choline metabolites, implying that they are governed by different underlying mechanisms. This work can contribute to a broader knowledge about the physiologic function of Tau, which may be translated into understanding the mechanisms of Tauopathies.
Collapse
Affiliation(s)
- Maria-Christina Zerva
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, 16672 Vari, Greece (V.P.)
- Athens International Master’s Program in Neurosciences, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Christos Triantafylloudis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, 16672 Vari, Greece (V.P.)
- Master’s Program in Molecular Biomedicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassilis Paspaliaris
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, 16672 Vari, Greece (V.P.)
- Laboratory of Experimental Physiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efthimios M. C. Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, 16672 Vari, Greece (V.P.)
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, 16672 Vari, Greece (V.P.)
| |
Collapse
|
6
|
Kim YA, Mellen M, Kizil C, Santa-Maria I. Mechanisms linking cerebrovascular dysfunction and tauopathy: Adding a layer of epiregulatory complexity. Br J Pharmacol 2024; 181:879-895. [PMID: 37926507 DOI: 10.1111/bph.16280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Intracellular accumulation of hyperphosphorylated misfolded tau proteins are found in many neurodegenerative tauopathies, including Alzheimer's disease (AD). Tau pathology can impact cerebrovascular physiology and function through multiple mechanisms. In vitro and in vivo studies have shown that alterations in the blood-brain barrier (BBB) integrity and function can result in synaptic abnormalities and neuronal damage. In the present review, we will summarize how tau proteostasis dysregulation contributes to vascular dysfunction and, conversely, we will examine the factors and pathways leading to tau pathological alterations triggered by cerebrovascular dysfunction. Finally, we will highlight the role epigenetic and epitranscriptomic factors play in regulating the integrity of the cerebrovascular system and the progression of tauopathy including a few observartions on potential therapeutic interventions. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Marian Mellen
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
7
|
Zhang Y, Li Y, Quan Z, Xiao P, Duan JA. New Insights into Antioxidant Peptides: An Overview of Efficient Screening, Evaluation Models, Molecular Mechanisms, and Applications. Antioxidants (Basel) 2024; 13:203. [PMID: 38397801 PMCID: PMC10886007 DOI: 10.3390/antiox13020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Antioxidant peptides are currently a hotspot in food science, pharmaceuticals, and cosmetics. In different fields, the screening, activity evaluation, mechanisms, and applications of antioxidant peptides are the pivotal areas of research. Among these topics, the efficient screening of antioxidant peptides stands at the forefront of cutting-edge research. To this end, efficient screening with novel technologies has significantly accelerated the research process, gradually replacing the traditional approach. After the novel antioxidant peptides are screened and identified, a time-consuming activity evaluation is another indispensable procedure, especially in in vivo models. Cellular and rodent models have been widely used for activity evaluation, whilst non-rodent models provide an efficient solution, even with the potential for high-throughput screening. Meanwhile, further research of molecular mechanisms can elucidate the essence underlying the activity, which is related to several signaling pathways, including Keap1-Nrf2/ARE, mitochondria-dependent apoptosis, TGF-β/SMAD, AMPK/SIRT1/PGC-1α, PI3K/Akt/mTOR, and NF-κB. Last but not least, antioxidant peptides have broad applications in food manufacture, therapy, and the cosmetics industry, which requires a systematic review. This review introduces novel technologies for the efficient screening of antioxidant peptides, categorized with a new vision. A wide range of activity evaluation assays, encompassing cellular models, as well as rodent and non-rodent models, are provided in a comprehensive manner. In addition, recent advances in molecular mechanisms are analyzed with specific cases. Finally, the applications of antioxidant peptides in food production, therapy, and cosmetics are systematically reviewed.
Collapse
Affiliation(s)
| | | | | | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Z.); (Y.L.); (Z.Q.)
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Z.); (Y.L.); (Z.Q.)
| |
Collapse
|
8
|
Vourkou E, Rouiz Ortega ED, Mahajan S, Mudher A, Skoulakis EMC. Human Tau Aggregates Are Permissive to Protein Synthesis-Dependent Memory in Drosophila Tauopathy Models. J Neurosci 2023; 43:2988-3006. [PMID: 36868851 PMCID: PMC10124960 DOI: 10.1523/jneurosci.1374-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/22/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Tauopathies including Alzheimer's disease, are characterized by progressive cognitive decline, neurodegeneration, and intraneuronal aggregates comprised largely of the axonal protein Tau. It has been unclear whether cognitive deficits are a consequence of aggregate accumulation thought to compromise neuronal health and eventually lead to neurodegeneration. We use the Drosophila tauopathy model and mixed-sex populations to reveal an adult onset pan-neuronal Tau accumulation-dependent decline in learning efficacy and a specific defect in protein synthesis-dependent memory (PSD-M), but not in its protein synthesis-independent variant. We demonstrate that these neuroplasticity defects are reversible on suppression of new transgenic human Tau expression and surprisingly correlate with an increase in Tau aggregates. Inhibition of aggregate formation via acute oral administration of methylene blue results in re-emergence of deficient memory in animals with suppressed human Tau (hTau)0N4R expression. Significantly, aggregate inhibition results in PSD-M deficits in hTau0N3R-expressing animals, which present elevated aggregates and normal memory if untreated with methylene blue. Moreover, methylene blue-dependent hTau0N4R aggregate suppression within adult mushroom body neurons also resulted in emergence of memory deficits. Therefore, deficient PSD-M on human Tau expression in the Drosophila CNS is not a consequence of toxicity and neuronal loss because it is reversible. Furthermore, PSD-M deficits do not result from aggregate accumulation, which appears permissive, if not protective of processes underlying this memory variant.SIGNIFICANCE STATEMENT Intraneuronal Tau aggregate accumulation has been proposed to underlie the cognitive decline and eventual neurotoxicity that characterizes the neurodegenerative dementias known as tauopathies. However, we show in three experimental settings that Tau aggregates in the Drosophila CNS do not impair but rather appear to facilitate processes underlying protein synthesis-dependent memory within affected neurons.
Collapse
Affiliation(s)
- Ergina Vourkou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre Alexander Fleming, 16672 Vari, Greece
| | - Eva D Rouiz Ortega
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Sumeet Mahajan
- School of Chemistry, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Amrit Mudher
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Efthimios M C Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre Alexander Fleming, 16672 Vari, Greece
| |
Collapse
|
9
|
Altered Mitochondrial Morphology and Bioenergetics in a New Yeast Model Expressing Aβ42. Int J Mol Sci 2023; 24:ijms24020900. [PMID: 36674415 PMCID: PMC9862424 DOI: 10.3390/ijms24020900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, age-related neurological disorder, the most common form of dementia. Considering that AD is a multifactorial complex disease, simplified experimental models are required for its analysis. For this purpose, genetically modified Yarrowia lipolytica yeast strains expressing Aβ42 (the main biomarker of AD), eGFP-Aβ42, Aβ40, and eGFP-Aβ40 were constructed and examined. In contrast to the cells expressing eGFP and eGFP-Aβ40, retaining "normal" mitochondrial reticulum, eGFP-Aβ42 cells possessed a disturbed mitochondrial reticulum with fragmented mitochondria; this was partially restored by preincubation with a mitochondria-targeted antioxidant SkQThy. Aβ42 expression also elevated ROS production and cell death; low concentrations of SkQThy mitigated these effects. Aβ42 expression caused mitochondrial dysfunction as inferred from a loose coupling of respiration and phosphorylation, the decreased level of ATP production, and the enhanced rate of hydrogen peroxide formation. Therefore, we have obtained the same results described for other AD models. Based on an analysis of these and earlier data, we suggest that the mitochondrial fragmentation might be a biomarker of the earliest preclinical stage of AD with an effective therapy based on mitochondria- targeted antioxidants. The simple yeast model constructed can be a useful platform for the rapid screening of such compounds.
Collapse
|
10
|
Campero-Garcia LA, Cantoral-Ceballos JA, Martinez-Maldonado A, Luna-Muñoz J, Ontiveros-Torres MA, Gutierrez-Rodriguez AE. A Novel Automatic Quantification Protocol for Biomarkers of Tauopathies in the Hippocampus and Entorhinal Cortex of Post-Mortem Samples Using an Extended Semi-Siamese U-Net. BIOLOGY 2022; 11:biology11081131. [PMID: 36009757 PMCID: PMC9404816 DOI: 10.3390/biology11081131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Tauopathies is a term coined to describe an umbrella of disorders characterized by abnormal Tau polypeptide deposits in neurons, glial cells, and extracellular space. In this work, we propose a novel quantification protocol for the study of tauopathies based on the U-Net neural network architecture. We also compare the proposed method against other state of the art variations of the U-Net to test its efficacy. Abstract Efforts have been made to diagnose and predict the course of different neurodegenerative diseases through various imaging techniques. Particularly tauopathies, where the tau polypeptide is a key participant in molecular pathogenesis, have significantly increased their morbidity and mortality in the human population over the years. However, the standard approach to exploring the phenomenon of neurodegeneration in tauopathies has not been directed at understanding the molecular mechanism that causes the aberrant polymeric and fibrillar behavior of the tau protein, which forms neurofibrillary tangles that replace neuronal populations in the hippocampal and cortical regions. The main objective of this work is to implement a novel quantification protocol for different biomarkers based on pathological post-translational modifications undergone by tau in the brains of patients with tauopathies. The quantification protocol consists of an adaptation of the U-Net neural network architecture. We used the resulting segmentation masks for the quantification of combined fluorescent signals of the different molecular changes tau underwent in neurofibrillary tangles. The quantification considers the neurofibrillary tangles as an individual study structure separated from the rest of the quadrant present in the images. This allows us to detect unconventional interaction signals between the different biomarkers. Our algorithm provides information that will be fundamental to understanding the pathogenesis of dementias with another computational analysis approach in subsequent studies.
Collapse
Affiliation(s)
- Luis A. Campero-Garcia
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.A.C.-G.); (J.A.C.-C.)
| | - Jose A. Cantoral-Ceballos
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.A.C.-G.); (J.A.C.-C.)
| | | | - Jose Luna-Muñoz
- Faculty of Higher Studies Cuautitlan, Biological Sciences, National Dementia BioBank, UNAM, Mexico City 04510, Mexico;
- National Brain Bank-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo 1423, Dominican Republic
| | - Miguel A. Ontiveros-Torres
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.A.C.-G.); (J.A.C.-C.)
- Correspondence: (M.A.O.-T.); (A.E.G.-R.)
| | - Andres E. Gutierrez-Rodriguez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.A.C.-G.); (J.A.C.-C.)
- Institute for the Future of Education, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Correspondence: (M.A.O.-T.); (A.E.G.-R.)
| |
Collapse
|
11
|
Kim TA, Syty MD, Wu K, Ge S. Adult hippocampal neurogenesis and its impairment in Alzheimer's disease. Zool Res 2022; 43:481-496. [PMID: 35503338 PMCID: PMC9113964 DOI: 10.24272/j.issn.2095-8137.2021.479] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022] Open
Abstract
Adult neurogenesis is the creation of new neurons which integrate into the existing neural circuit of the adult brain. Recent evidence suggests that adult hippocampal neurogenesis (AHN) persists throughout life in mammals, including humans. These newborn neurons have been implicated to have a crucial role in brain functions such as learning and memory. Importantly, studies have also found that hippocampal neurogenesis is impaired in neurodegenerative and neuropsychiatric diseases. Alzheimer's disease (AD) is one of the most common forms of dementia affecting millions of people. Cognitive dysfunction is a common symptom of AD patients and progressive memory loss has been attributed to the degeneration of the hippocampus. Therefore, there has been growing interest in identifying how hippocampal neurogenesis is affected in AD. However, the link between cognitive decline and changes in hippocampal neurogenesis in AD is poorly understood. In this review, we summarized the recent literature on AHN and its impairments in AD.
Collapse
Affiliation(s)
- Thomas A Kim
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at SUNY, Stony Brook, Stony Brook, NY 11794, USA
| | - Michelle D Syty
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Kaitlyn Wu
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA. E-mail:
| |
Collapse
|
12
|
Giong HK, Lee JS. Systematic expression profiling of neuropathy-related aminoacyl-tRNA synthetases in zebrafish during development. Biochem Biophys Res Commun 2022; 587:92-98. [PMID: 34872004 DOI: 10.1016/j.bbrc.2021.11.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/27/2021] [Indexed: 12/01/2022]
Abstract
Aminoacyl tRNA synthetases (ARSs) are a group of proteins, acting as transporters to transfer and attach the appropriate amino acids onto their cognate tRNAs for translation. So far, 18 out of 20 cytoplasmic ARSs are reported to be connected to different neuropathy disorders with multi-organ defects that are often accompanied with developmental delays. Thus, it is important to understand functions and impacts of ARSs at the whole organism level. Here, we systematically analyzed the spatiotemporal expression of 14 ars and 2 aimp genes during development in zebrafish that have not be previously reported. Not only in the brain, their dynamic expression patterns in several tissues such as in the muscles, liver and intestine suggest diverse roles in a wide range of development processes in addition to neuronal function, which is consistent with potential involvement in multiple syndrome diseases associated with ARS mutations. In particular, hinted by its robust expression pattern in the brain, we confirmed that aimp1 is required for the formation of cerebrovasculature by a loss-of-function approach. Overall, our systematic profiling data provides a useful basis for studying roles of ARSs during development and understanding their potential functions in the etiology of related diseases.
Collapse
Affiliation(s)
- Hoi-Khoanh Giong
- Disease Target Structure Research Center, KRIBB, Daejeon, South Korea; KRIBB School, University of Science and Technology, Daejeon, South Korea; Dementia DTC R&D Convergence Program, KIST, Seoul, South Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, Daejeon, South Korea; KRIBB School, University of Science and Technology, Daejeon, South Korea; Dementia DTC R&D Convergence Program, KIST, Seoul, South Korea.
| |
Collapse
|