1
|
Ye X, Chen S, Xiong W, Wang F, Chan HF, Lai H, Guo X, Yang T, Shen S, Chen H, Wang W, Liu GS, Guo Y, Chen J. Magnetic-Guided Delivery of Antisense Oligonucleotides for Targeted Transduction in Multiple Retinal Explant and Organoid Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417363. [PMID: 40278802 DOI: 10.1002/advs.202417363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/21/2025] [Indexed: 04/26/2025]
Abstract
Antisense oligonucleotide (ASO) therapy holds promise in gene therapy but faces challenges due to poor delivery efficiency and limited evaluation models. This investigation employs magnetic nanoparticles (MNPs) to augment the delivery efficiency of ASOs. It assesses their distribution and therapeutic efficacy across various models, including retinal explants from mice and macaques or human retinal and inner ear organoids. Retinal explants from both mice and monkeys are methodically arranged to expose the ganglion cell layer (GCL) or the photoreceptor layer (PL). MNPs markedly enhanced the penetration and targeting of ASOs, resulting in a 60% accumulation in the GCL or 72% in the photoreceptors. Furthermore, an in vitro biomimetic model of the neuroretina-RPE/choroid-sclera complex is developed to examine ASO distribution under dynamic flow conditions. Moreover, the utilization of MNP-assisted ASO-Cy3 markedly enhanced transfection efficiency within human retinal and inner ear organoids, resulting in an increase in positively transfected cells to 60% and 70%, respectively. Here, for the first time, an MNP-explant-organoid platform is carried out for the promotion of ASO transfection efficiency, therapeutic screening and targeted delivery. This development paves the way for investigating novel gene therapy strategies targeting retinal diseases.
Collapse
Affiliation(s)
- Xiuhong Ye
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Sihui Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Wei Xiong
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Fan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Haocheng Lai
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510000, China
| | - Tingting Yang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Shuhao Shen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Hang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Wenxuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Guei-Sheung Liu
- Aier Eye Institute, Aier Eye Hospital Group Co., Ltd., Changsha, 410000, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3010, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Yonglong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiansu Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510632, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China
- Aier Eye Institute, Aier Eye Hospital Group Co., Ltd., Changsha, 410000, China
| |
Collapse
|
2
|
Chukwunalu O, Ambrósio AF, Carvalho AL, Quinn PMJ, Marques JP, Alves CH. Genetic Landscape of Nonsyndromic Retinitis Pigmentosa in Portugal. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:81-86. [PMID: 39930177 DOI: 10.1007/978-3-031-76550-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Inherited retinal degenerations (IRDs) comprise a heterogeneous group of disorders that cause severe vision loss or even blindness. With an estimated prevalence of 1:4000, Retinitis Pigmentosa (RP) is the most prevalent IRD. RP is characterized by progressive centripetal degeneration of rods, followed by degeneration of cone photoreceptors. Clinically, RP presents with nyctalopia of variable age of onset and progressive narrowing of the peripheral visual field. Most patients eventually experience some degree of central vision loss, leading to legal blindness. We have evaluated the most common RP-causing genes in a Portuguese IRD registry (IRD-PT, www.retina.com.pt ).
Collapse
Affiliation(s)
- Oluji Chukwunalu
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - António Francisco Ambrósio
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana Luísa Carvalho
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Medical Genetics Unit, Unidade Local de Saúde de Coimbra (ULS de Coimbra), Coimbra, Portugal
- Univ Coimbra, Clinic of Medical Genetics, Faculty of Medicine, Coimbra, Portugal
| | - Peter M J Quinn
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
- FM Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - João Pedro Marques
- Ophthalmology Unit, Unidade Local de Saúde de Coimbra (ULS de Coimbra), Coimbra, Portugal
- Univ Coimbra, University Clinic of Ophthalmology, Faculty of Medicine, Coimbra, Portugal
| | - C Henrique Alves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
3
|
Chaoul V, Dib EY, Bedran J, Khoury C, Shmoury O, Harb F, Soueid J. Assessing Drug Administration Techniques in Zebrafish Models of Neurological Disease. Int J Mol Sci 2023; 24:14898. [PMID: 37834345 PMCID: PMC10573323 DOI: 10.3390/ijms241914898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2023] Open
Abstract
Neurological diseases, including neurodegenerative and neurodevelopmental disorders, affect nearly one in six of the world's population. The burden of the resulting deaths and disability is set to rise during the next few decades as a consequence of an aging population. To address this, zebrafish have become increasingly prominent as a model for studying human neurological diseases and exploring potential therapies. Zebrafish offer numerous benefits, such as genetic homology and brain similarities, complementing traditional mammalian models and serving as a valuable tool for genetic screening and drug discovery. In this comprehensive review, we highlight various drug delivery techniques and systems employed for therapeutic interventions of neurological diseases in zebrafish, and evaluate their suitability. We also discuss the challenges encountered during this process and present potential advancements in innovative techniques.
Collapse
Affiliation(s)
- Victoria Chaoul
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Emanuel-Youssef Dib
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Joe Bedran
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Chakib Khoury
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Omar Shmoury
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Frédéric Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Jihane Soueid
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| |
Collapse
|
4
|
Schellens RT, Broekman S, Peters T, Graave P, Malinar L, Venselaar H, Kremer H, De Vrieze E, Van Wijk E. A protein domain-oriented approach to expand the opportunities of therapeutic exon skipping for USH2A-associated retinitis pigmentosa. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:980-994. [PMID: 37313440 PMCID: PMC10258241 DOI: 10.1016/j.omtn.2023.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Loss-of-function mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). We previously presented skipping of USH2A exon 13 as a promising treatment paradigm for USH2A-associated RP. However, RP-associated mutations are often private, and evenly distributed along the USH2A gene. In order to broaden the group of patients that could benefit from therapeutic exon skipping strategies, we expanded our approach to other USH2A exons in which unique loss-of-function mutations have been reported by implementing a protein domain-oriented dual exon skipping strategy. We first generated zebrafish mutants carrying a genomic deletion of the orthologous exons of the frequently mutated human USH2A exons 30-31 or 39-40 using CRISPR-Cas9. Excision of these in-frame combinations of exons restored usherin expression in the zebrafish retina and rescued the photopigment mislocalization typically observed in ush2a mutants. To translate these findings into a future treatment in humans, we employed in vitro assays to identify and validate antisense oligonucleotides (ASOs) with a high potency for sequence-specific dual exon skipping. Together, the in vitro and in vivo data demonstrate protein domain-oriented ASO-induced dual exon skipping to be a highly promising treatment option for RP caused by mutations in USH2A.
Collapse
Affiliation(s)
- Renske T.W. Schellens
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 GL Nijmegen, the Netherlands
| | - Sanne Broekman
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Theo Peters
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Pam Graave
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Lucija Malinar
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 GL Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erik De Vrieze
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 GL Nijmegen, the Netherlands
| | - Erwin Van Wijk
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 GL Nijmegen, the Netherlands
| |
Collapse
|
5
|
Raterman ST, Von Den Hoff JW, Dijkstra S, De Vriend C, Te Morsche T, Broekman S, Zethof J, De Vrieze E, Wagener FADTG, Metz JR. Disruption of the foxe1 gene in zebrafish reveals conserved functions in development of the craniofacial skeleton and the thyroid. Front Cell Dev Biol 2023; 11:1143844. [PMID: 36994096 PMCID: PMC10040582 DOI: 10.3389/fcell.2023.1143844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction: Mutations in the FOXE1 gene are implicated in cleft palate and thyroid dysgenesis in humans.Methods: To investigate whether zebrafish could provide meaningful insights into the etiology of developmental defects in humans related to FOXE1, we generated a zebrafish mutant that has a disruption in the nuclear localization signal in the foxe1 gene, thereby restraining nuclear access of the transcription factor. We characterized skeletal development and thyroidogenesis in these mutants, focusing on embryonic and larval stages.Results: Mutant larvae showed aberrant skeletal phenotypes in the ceratohyal cartilage and had reduced whole body levels of Ca, Mg and P, indicating a critical role for foxe1 in early skeletal development. Markers of bone and cartilage (precursor) cells were differentially expressed in mutants in post-migratory cranial neural crest cells in the pharyngeal arch at 1 dpf, at induction of chondrogenesis at 3 dpf and at the start of endochondral bone formation at 6 dpf. Foxe1 protein was detected in differentiated thyroid follicles, suggesting a role for the transcription factor in thyroidogenesis, but thyroid follicle morphology or differentiation were unaffected in mutants.Discussion: Taken together, our findings highlight the conserved role of Foxe1 in skeletal development and thyroidogenesis, and show differential signaling of osteogenic and chondrogenic genes related to foxe1 mutation.
Collapse
Affiliation(s)
- Sophie T. Raterman
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
- *Correspondence: Sophie T. Raterman,
| | - Johannes W. Von Den Hoff
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Sietske Dijkstra
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Cheyenne De Vriend
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Tim Te Morsche
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Sanne Broekman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Erik De Vrieze
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank A. D. T. G. Wagener
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| |
Collapse
|
6
|
Genotypic and phenotypic profiles of EYS gene-related retinitis pigmentosa: a retrospective study. Sci Rep 2022; 12:21494. [PMID: 36513702 PMCID: PMC9748023 DOI: 10.1038/s41598-022-26017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Retinitis pigmentosa (RP) affects 1:5000 individuals worldwide. Interestingly, variations in 271 RP-related genes are indicated to vary among populations. We aimed to evaluate the genetic prevalence and phenotypic profiles of Thai patients with RP. The clinical and whole exome sequencing data of 125 patients suggestive of inherited retinal diseases (IRD), particularly non-syndromic RP, were assessed. We found a total of 258 variants (63% of which remained unavailable in the ClinVar database) in 91 IRD-associated genes. Among the detected genes, the eyes shut homolog (EYS) gene showed the highest prevalence. We also provide insights into the genotypic, baseline, and follow-up clinical presentations of seven patients with disease-causing EYS variations. This study could provide comprehension of the prevalence of RP-related genes involved in the Asian population. It might also provide information to establish advanced and personalised therapy for RP in the Thai population.
Collapse
|
7
|
Zebrafish and inherited photoreceptor disease: Models and insights. Prog Retin Eye Res 2022; 91:101096. [PMID: 35811244 DOI: 10.1016/j.preteyeres.2022.101096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022]
Abstract
Photoreceptor dysfunctions and degenerative diseases are significant causes of vision loss in patients, with few effective treatments available. Targeted interventions to prevent or reverse photoreceptor-related vision loss are not possible without a thorough understanding of the underlying mechanism leading to disease, which is exceedingly difficult to accomplish in the human system. Cone diseases are particularly challenging to model, as some popular genetically modifiable model animals are nocturnal with a rod-dominant visual system and cones that have dissimilarities to human cones. As a result, cone diseases, which affect visual acuity, colour perception, and central vision in patients, are generally poorly understood in terms of pathology and mechanism. Zebrafish (Danio rerio) provide the opportunity to model photoreceptor diseases in a diurnal vertebrate with a cone-rich retina which develops many macular degeneration-like pathologies. Zebrafish undergo external development, allowing early-onset retinal diseases to be detected and studied, and many ophthalmic tools are available for zebrafish visual assessment during development and adulthood. There are numerous zebrafish models of photoreceptor disease, spanning the various types of photoreceptor disease (developmental, rod, cone, and mixed photoreceptor diseases) and genetic/molecular cause. In this review, we explore the features of zebrafish that make them uniquely poised to model cone diseases, summarize the established zebrafish models of inherited photoreceptor disease, and discuss how disease in these models compares to the human presentation, where applicable. Further, we highlight the contributions of these zebrafish models to our understanding of photoreceptor biology and disease, and discuss future directions for utilising and investigating these diverse models.
Collapse
|
8
|
de Vrieze E, de Bruijn SE, Reurink J, Broekman S, van de Riet V, Aben M, Kremer H, van Wijk E. Efficient Generation of Knock-In Zebrafish Models for Inherited Disorders Using CRISPR-Cas9 Ribonucleoprotein Complexes. Int J Mol Sci 2021; 22:9429. [PMID: 34502338 PMCID: PMC8431507 DOI: 10.3390/ijms22179429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
CRISPR-Cas9-based genome-editing is a highly efficient and cost-effective method to generate zebrafish loss-of-function alleles. However, introducing patient-specific variants into the zebrafish genome with CRISPR-Cas9 remains challenging. Targeting options can be limited by the predetermined genetic context, and the efficiency of the homology-directed DNA repair pathway is relatively low. Here, we illustrate our efficient approach to develop knock-in zebrafish models using two previously variants associated with hereditary sensory deficits. We employ sgRNA-Cas9 ribonucleoprotein (RNP) complexes that are micro-injected into the first cell of fertilized zebrafish eggs together with an asymmetric, single-stranded DNA template containing the variant of interest. The introduction of knock-in events was confirmed by massive parallel sequencing of genomic DNA extracted from a pool of injected embryos. Simultaneous morpholino-induced blocking of a key component of the non-homologous end joining DNA repair pathway, Ku70, improved the knock-in efficiency for one of the targets. Our use of RNP complexes provides an improved knock-in efficiency as compared to previously published studies. Correct knock-in events were identified in 3-8% of alleles, and 30-45% of injected animals had the target variant in their germline. The detailed technical and procedural insights described here provide a valuable framework for the efficient development of knock-in zebrafish models.
Collapse
Affiliation(s)
- Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.B.); (V.v.d.R.); (H.K.); (E.v.W.)
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands; (S.E.d.B.); (J.R.); (M.A.)
| | - Suzanne E. de Bruijn
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands; (S.E.d.B.); (J.R.); (M.A.)
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Janine Reurink
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands; (S.E.d.B.); (J.R.); (M.A.)
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sanne Broekman
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.B.); (V.v.d.R.); (H.K.); (E.v.W.)
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands; (S.E.d.B.); (J.R.); (M.A.)
| | - Vince van de Riet
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.B.); (V.v.d.R.); (H.K.); (E.v.W.)
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands; (S.E.d.B.); (J.R.); (M.A.)
| | - Marco Aben
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands; (S.E.d.B.); (J.R.); (M.A.)
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.B.); (V.v.d.R.); (H.K.); (E.v.W.)
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands; (S.E.d.B.); (J.R.); (M.A.)
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.B.); (V.v.d.R.); (H.K.); (E.v.W.)
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands; (S.E.d.B.); (J.R.); (M.A.)
| |
Collapse
|