1
|
Elias-Mas A, Wang JY, Rodríguez-Revenga L, Kim K, Tassone F, Hessl D, Rivera SM, Hagerman R. Enlarged perivascular spaces and their association with motor, cognition, MRI markers and cerebrovascular risk factors in male fragile X premutation carriers. J Neurol Sci 2024; 461:123056. [PMID: 38772058 PMCID: PMC12005344 DOI: 10.1016/j.jns.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
FMR1 premutation carriers (55-200 CGG repeats) are at risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disorder associated with motor and cognitive impairment. Bilateral hyperintensities of the middle cerebellar peduncles (MCP sign) are the major radiological hallmarks of FXTAS. In the general population, enlarged perivascular spaces (PVS) are biomarkers of small vessel disease and glymphatic dysfunction and are associated with cognitive decline. Our aim was to determine if premutation carriers show higher ratings of PVS than controls and whether enlarged PVS are associated with motor and cognitive impairment, MRI features of neurodegeneration, cerebrovascular risk factors and CGG repeat length. We evaluated 655 MRIs (1-10 visits/participant) from 229 carriers (164 with FXTAS and 65 without FXTAS) and 133 controls. PVS in the basal ganglia (BG-EPVS), centrum semiovale, and midbrain were evaluated with a semiquantitative scale. Mixed-effects models were used for statistical analysis adjusting for age. In carriers with FXTAS, we revealed that (1) BG-PVS ratings were higher than those of controls and carriers without FXTAS; (2) BG-PVS severity was associated with brain atrophy, white matter hyperintensities, enlarged ventricles, FXTAS stage and abnormal gait; (3) age-related increase in BG-PVS was associated with cognitive dysfunction; and (4) PVS ratings of all three regions showed robust associations with CGG repeat length and were higher in carriers with the MCP sign than carriers without the sign. This study demonstrates clinical relevance of PVS in FXTAS especially in the basal ganglia region and suggests microangiopathy and dysfunctional cerebrospinal fluid circulation in FXTAS physiopathology.
Collapse
Affiliation(s)
- Andrea Elias-Mas
- Radiology Department, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain; Institute for Research and Innovation Parc Taulí (I3PT), Sabadell, Spain; Genetics Doctorate Program, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, CA, United States.
| | - Laia Rodríguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain; CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain; Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, CA, United States.
| | - Flora Tassone
- MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States.
| | - David Hessl
- MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States.
| | - Susan M Rivera
- Center for Mind and Brain, University of California Davis, CA, United States; MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Psychology, University of Maryland, College Park, MD, United States.
| | - Randi Hagerman
- MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA, United States.
| |
Collapse
|
2
|
Santos E, Clark C, Biag HMB, Tang SJ, Kim K, Ponzini MD, Schneider A, Giulivi C, Montanaro FAM, Gipe JTE, Dayton J, Randol JL, Yao PJ, Manolopoulos A, Kapogiannis D, Hwang YH, Hagerman P, Hagerman R, Tassone F. Open-Label Sulforaphane Trial in FMR1 Premutation Carriers with Fragile-X-Associated Tremor and Ataxia Syndrome (FXTAS). Cells 2023; 12:2773. [PMID: 38132093 PMCID: PMC10741398 DOI: 10.3390/cells12242773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Fragile X (FMR1) premutation is a common mutation that affects about 1 in 200 females and 1 in 450 males and can lead to the development of fragile-X-associated tremor/ataxia syndrome (FXTAS). Although there is no targeted, proven treatment for FXTAS, research suggests that sulforaphane, an antioxidant present in cruciferous vegetables, can enhance mitochondrial function and maintain redox balance in the dermal fibroblasts of individuals with FXTAS, potentially leading to improved cognitive function. In a 24-week open-label trial involving 15 adults aged 60-88 with FXTAS, 11 participants successfully completed the study, demonstrating the safety and tolerability of sulforaphane. Clinical outcomes and biomarkers were measured to elucidate the effects of sulforaphane. While there were nominal improvements in multiple clinical measures, they were not significantly different after correction for multiple comparisons. PBMC energetic measures showed that the level of citrate synthase was higher after sulforaphane treatment, resulting in lower ATP production. The ratio of complex I to complex II showed positive correlations with the MoCA and BDS scores. Several mitochondrial biomarkers showed increased activity and quantity and were correlated with clinical improvements.
Collapse
Affiliation(s)
- Ellery Santos
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95817, USA
| | - Courtney Clark
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95817, USA
| | - Hazel Maridith B. Biag
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95817, USA
| | - Si Jie Tang
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95817, USA
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Matthew D. Ponzini
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95817, USA
| | - Cecilia Giulivi
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Jesse Tran-Emilia Gipe
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jacquelyn Dayton
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jamie L. Randol
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J. Yao
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 212241, USA (A.M.); (D.K.)
| | - Apostolos Manolopoulos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 212241, USA (A.M.); (D.K.)
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 212241, USA (A.M.); (D.K.)
| | - Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| | - Paul Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95817, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Valenti D, Vacca RA. Brain Mitochondrial Bioenergetics in Genetic Neurodevelopmental Disorders: Focus on Down, Rett and Fragile X Syndromes. Int J Mol Sci 2023; 24:12488. [PMID: 37569863 PMCID: PMC10419900 DOI: 10.3390/ijms241512488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondria, far beyond their prominent role as cellular powerhouses, are complex cellular organelles active as central metabolic hubs that are capable of integrating and controlling several signaling pathways essential for neurological processes, including neurogenesis and neuroplasticity. On the other hand, mitochondria are themselves regulated from a series of signaling proteins to achieve the best efficiency in producing energy, in establishing a network and in performing their own de novo synthesis or clearance. Dysfunctions in signaling processes that control mitochondrial biogenesis, dynamics and bioenergetics are increasingly associated with impairment in brain development and involved in a wide variety of neurodevelopmental disorders. Here, we review recent evidence proving the emerging role of mitochondria as master regulators of brain bioenergetics, highlighting their control skills in brain neurodevelopment and cognition. We analyze, from a mechanistic point of view, mitochondrial bioenergetic dysfunction as causally interrelated to the origins of typical genetic intellectual disability-related neurodevelopmental disorders, such as Down, Rett and Fragile X syndromes. Finally, we discuss whether mitochondria can become therapeutic targets to improve brain development and function from a holistic perspective.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
5
|
Napoli E. Molecular, Translational and Clinical Research on the Two Most Common Forms of Neurodegenerative Dementia: Alzheimer's Disease and Dementia with Lewy Bodies. Int J Mol Sci 2023; 24:ijms24097996. [PMID: 37175703 PMCID: PMC10178392 DOI: 10.3390/ijms24097996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
While not a specific disease, dementia is a term used to describe the deterioration of cognitive function beyond what would be expected because of natural biological aging [...].
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
6
|
Giulivi C, Wang JY, Hagerman RJ. Artificial neural network applied to fragile X-associated tremor/ataxia syndrome stage diagnosis based on peripheral mitochondrial bioenergetics and brain imaging outcomes. Sci Rep 2022; 12:21382. [PMID: 36496525 PMCID: PMC9741636 DOI: 10.1038/s41598-022-25615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
No proven prognosis is available for the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Artificial neural network analyses (ANN) were used to predict FXTAS progression using data from 127 adults (noncarriers and FMR1 premutation carriers with and without FXTAS) with five outcomes from brain MRI imaging and 22 peripheral bioenergetic outcomes from two cell types. Diagnosis accuracy by ANN predictions ranged from 41.7 to 86.3% (depending on the algorithm used), and those misclassified usually presented a higher FXTAS stage. ANN prediction of FXTAS stages was based on a combination of two imaging findings (white matter hyperintensity and whole-brain volumes adjusted for intracranial volume) and four bioenergetic outcomes. Those at Stage 3 vs. 0-2 showed lower mitochondrial mass, higher oxidative stress, and an altered electron transfer consistent with mitochondrial unfolded protein response activation. Those at Stages 4-5 vs. 3 had higher oxidative stress and glycerol-3-phosphate-linked ATP production, suggesting that targeting mGPDH activity may prevent a worse prognosis. This was confirmed by the bioenergetic improvement of inhibiting mGPDH with metformin in affected fibroblasts. ANN supports the prospect of an unbiased molecular definition in diagnosing FXTAS stages while identifying potential targets for personalized medicine.
Collapse
Affiliation(s)
- Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA.
| | - Jun Yi Wang
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
| | - Randi J Hagerman
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA
- Department of Pediatrics, University of California at Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
7
|
Orsucci D, Lorenzetti L, Baldinotti F, Rossi A, Vitolo E, Gheri FL, Napolitano A, Tintori G, Vista M. Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): A Gender Perspective. J Clin Med 2022; 11:jcm11041002. [PMID: 35207276 PMCID: PMC8876035 DOI: 10.3390/jcm11041002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
Although larger trinucleotide expansions give rise to a neurodevelopmental disorder called fragile X syndrome, fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by a “premutation” (55–200 CGG repeats) in the FMR1 gene. FXTAS is one of the more common single-gene forms of late-onset ataxia and tremor that may have a more complex development in women, with atypical presentations. After a brief presentation of the atypical case of an Italian woman with FXTAS, who had several paroxysmal episodes suggestive of acute cerebellar and/or brainstem dysfunction, this article will revise the phenotype of FXTAS in women. Especially in females, FXTAS has a broad spectrum of symptoms, ranging from relatively severe diseases in mid-adulthood to mild cases beginning in later life. Female FXTAS and male FXTAS have a different symptomatic spectrum, and studies on the fragile X premutation should be conducted separately on women or men. Hopefully, a better understanding of the molecular processes involved in the polymorphic features of FXTAS will lead to more specific and effective therapies for this complex disorder.
Collapse
Affiliation(s)
- Daniele Orsucci
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy;
- Correspondence: or
| | - Lucia Lorenzetti
- Unit of Internal Medicine, Santa Croce Hospital, 55032 Castelnuovo Garfagnana, Lucca, Italy; (L.L.); (E.V.); (F.L.G.); (G.T.)
| | - Fulvia Baldinotti
- Laboratory of Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Andrea Rossi
- Medical Affairs and Scientific Communications, 1260 Nyon, Switzerland;
| | - Edoardo Vitolo
- Unit of Internal Medicine, Santa Croce Hospital, 55032 Castelnuovo Garfagnana, Lucca, Italy; (L.L.); (E.V.); (F.L.G.); (G.T.)
| | - Fabio Luigi Gheri
- Unit of Internal Medicine, Santa Croce Hospital, 55032 Castelnuovo Garfagnana, Lucca, Italy; (L.L.); (E.V.); (F.L.G.); (G.T.)
| | | | - Giancarlo Tintori
- Unit of Internal Medicine, Santa Croce Hospital, 55032 Castelnuovo Garfagnana, Lucca, Italy; (L.L.); (E.V.); (F.L.G.); (G.T.)
| | - Marco Vista
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy;
| |
Collapse
|
8
|
Wang JY, Grigsby J, Placido D, Wei H, Tassone F, Kim K, Hessl D, Rivera SM, Hagerman RJ. Clinical and Molecular Correlates of Abnormal Changes in the Cerebellum and Globus Pallidus in Fragile X Premutation. Front Neurol 2022; 13:797649. [PMID: 35211082 PMCID: PMC8863211 DOI: 10.3389/fneur.2022.797649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Fragile X premutation carriers (55-200 CGG triplets) may develop a progressive neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS), after the age of 50. The neuroradiologic markers of FXTAS are hyperintense T2-signals in the middle cerebellar peduncle-the MCP sign. We recently noticed abnormal T2-signals in the globus pallidus in male premutation carriers and controls but the prevalence and clinical significance were unknown. METHODS We estimated the prevalence of the MCP sign and pallidal T2-abnormalities in 230 male premutation carriers and 144 controls (aged 8-86), and examined the associations with FXTAS symptoms, CGG repeat length, and iron content in the cerebellar dentate nucleus and globus pallidus. RESULTS Among participants aged ≥45 years (175 premutation carriers and 82 controls), MCP sign was observed only in premutation carriers (52 vs. 0%) whereas the prevalence of pallidal T2-abnormalities approached significance in premutation carriers compared with controls after age-adjustment (25.1 vs. 13.4%, p = 0.069). MCP sign was associated with impaired motor and executive functioning, and the additional presence of pallidal T2-abnormalities was associated with greater impaired executive functioning. Among premutation carriers, significant iron accumulation was observed in the dentate nucleus, and neither pallidal or MCP T2-abnormalities affected measures of the dentate nucleus. While the MCP sign was associated with CGG repeat length >75 and dentate nucleus volume correlated negatively with CGG repeat length, pallidal T2-abnormalities did not correlate with CGG repeat length. However, pallidal signal changes were associated with age-related accelerated iron depletion and variability and having both MCP and pallidal signs further increased iron variability in the globus pallidus. CONCLUSIONS Only the MCP sign, not pallidal abnormalities, revealed independent associations with motor and cognitive impairment; however, the occurrence of combined MCP and pallidal T2-abnormalities may present a risk for greater cognitive impairment and increased iron variability in the globus pallidus.
Collapse
Affiliation(s)
- Jun Yi Wang
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Jim Grigsby
- Departments of Psychology and Medicine, University of Colorado Denver, Denver, CO, United States
| | - Diego Placido
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute for Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - David Hessl
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Susan M. Rivera
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Departments of Psychology and Medicine, University of Colorado Denver, Denver, CO, United States
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States
| | - Randi J. Hagerman
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
9
|
Fisher PR, Allan CY, Sanislav O, Atkinson A, Ngoei KRW, Kemp BE, Storey E, Loesch DZ, Annesley SJ. Relationships between Mitochondrial Function, AMPK, and TORC1 Signaling in Lymphoblasts with Premutation Alleles of the FMR1 Gene. Int J Mol Sci 2021; 22:10393. [PMID: 34638732 PMCID: PMC8508849 DOI: 10.3390/ijms221910393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
The X-linked FMR1 gene contains a non-coding trinucleotide repeat in its 5' region that, in normal, healthy individuals contains 20-44 copies. Large expansions of this region (>200 copies) cause fragile X syndrome (FXS), but expansions of 55-199 copies (referred to as premutation alleles) predispose carriers to a neurodegenerative disease called fragile X-associated tremor/ataxia syndrome (FXTAS). The cytopathological mechanisms underlying FXTAS are poorly understood, but abnormalities in mitochondrial function are believed to play a role. We previously reported that lymphoblastoid cell lines (LCLs, or lymphoblasts) of premutation carriers have elevated mitochondrial respiratory activities. In the carriers, especially those not clinically affected with FXTAS, AMP-activated protein kinase (AMPK) activity was shown to be elevated. In the FXTAS patients, however, it was negatively correlated with brain white matter lesions, suggesting a protective role in the molecular mechanisms. Here, we report an enlarged and extended study of mitochondrial function and associated cellular stress-signaling pathways in lymphoblasts isolated from male and female premutation carriers, regardless of their clinical status, and healthy controls. The results confirmed the elevation of AMPK and mitochondrial respiratory activities and reduction in reactive O2 species (ROS) levels in premutation cells and revealed for the first time that target of rapamycin complex I (TORC1) activities are reduced. Extensive correlation, multiple regression, and principal components analysis revealed the best fitting statistical explanations of these changes in terms of the other variables measured. These suggested which variables might be the most "proximal" regulators of the others in the extensive network of known causal interactions amongst the measured parameters of mitochondrial function and cellular stress signaling. In the resulting model, the premutation alleles activate AMPK and inhibit both TORC1 and ROS production, the reduced TORC1 activity contributes to activation of AMPK and of nonmitochondrial metabolism, and the higher AMPK activity results in elevated catabolic metabolism, mitochondrial respiration, and ATP steady state levels. In addition, the results suggest a separate CGG repeat number-dependent elevation of TORC1 activity that is insufficient to overcome the inhibition of TORC1 in premutation cells but may presage the previously reported activation of TORC1 in FXS cells.
Collapse
Affiliation(s)
- Paul R. Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (C.Y.A.); (O.S.); (S.J.A.)
| | - Claire Y. Allan
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (C.Y.A.); (O.S.); (S.J.A.)
| | - Oana Sanislav
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (C.Y.A.); (O.S.); (S.J.A.)
| | - Anna Atkinson
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia; (A.A.); (D.Z.L.)
| | - Kevin R. W. Ngoei
- St. Vincent’s Institute of Medical Research, Department of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia; (K.R.W.N.); (B.E.K.)
| | - Bruce E. Kemp
- St. Vincent’s Institute of Medical Research, Department of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia; (K.R.W.N.); (B.E.K.)
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Elsdon Storey
- Department of Medicine, Alfred Hospital Campus, Monash University, Commercial Road, Melbourne, VIC 3004, Australia;
| | - Danuta Z. Loesch
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia; (A.A.); (D.Z.L.)
| | - Sarah J. Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (C.Y.A.); (O.S.); (S.J.A.)
| |
Collapse
|